Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khan, Mohammed Nazrul Islam

  • Google
  • 2
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Structural, Electronic, Elastic, Mechanical, and Opto-Electronic Properties for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 Photocatalyst Effort on Wastewater Treatment through the First Principle Study5citations
  • 2023Structural, Electronic, Elastic, Mechanical, and Opto-Electronic Properties for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 Photocatalyst Effort on Wastewater Treatment through the First Principle Study5citations

Places of action

Chart of shared publication
Sohag, Md. Sabbir Hasan
1 / 1 shared
Chakma, Unesco
1 / 1 shared
Islam, Mohammad Jahidul
1 / 1 shared
Kumer, Ajoy
1 / 2 shared
Alam, Md. Monsur
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sohag, Md. Sabbir Hasan
  • Chakma, Unesco
  • Islam, Mohammad Jahidul
  • Kumer, Ajoy
  • Alam, Md. Monsur
OrganizationsLocationPeople

article

Structural, Electronic, Elastic, Mechanical, and Opto-Electronic Properties for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 Photocatalyst Effort on Wastewater Treatment through the First Principle Study

  • Khan, Mohammed Nazrul Islam
Abstract

<jats:p>The stannite structured ZnAg2SnS4 was developed from its parent composition ZnAg2GeS4, which is considered to be an excellent photocatalytic material, as the demands for photocatalytic effect on organic and waste water treatment have been increasing around the globe. First and foremost, the geometry optimization was performed by density functional theory (DFT) of the generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE)-ballpark figured as the successful candidate for computational screening containing heavy metal complexes. The structural geometry parameters were determined along with the electronic band structure, density of state (DOS), partial density of state (PDOS), Mulliken charge population, elastic constant, and optical characteristics. When the Ge (ZnAg2GeS4) atom has been swapped out by a Sn (ZnAg2SnS4) atom, the changes in band gap is noticeable, which rises from 0.94 eV to 1.15 eV with the same geometry and surface area. But, after 7% Fe doping, it has decreased to 0.32 eV. The PDOS demonstrates that the production of hydrogen for photocatalytic influence on wastewater treatment is dependent on the Fe atom's ability to induce and boost the electron density in both the conduction band and the valence band. The study of the elastic constant and mechanical constant revealed that these crystals are extremely stable in any environment. The dielectric constant and optical absorptions illustrate the superior evidence for photocatalytic activity. To sum up, it could be said that after doping of Fe, the elastic constant and mechanical constant show all universal anisotropic index crystals and ZnAg2Sn0.93Fe0.07S4 can absorb a variety of UV radiation, which raises the possibility that it could function as a photocatalyst.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • theory
  • dielectric constant
  • anisotropic
  • Hydrogen
  • density functional theory
  • band structure