Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Macedo Rooweder Lima, Guilherme

  • Google
  • 3
  • 9
  • 67

University of Groningen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Production and Application of Polymer Foams Employing Supercritical Carbon Dioxide6citations
  • 2021Thermally Switchable Electrically Conductive Thermoset rGO/PK Self-Healing Composites23citations
  • 2019Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds38citations

Places of action

Chart of shared publication
Bose, Ranjita K.
3 / 32 shared
Pucci, Andrea
2 / 60 shared
Araya-Hermosilla, Esteban
1 / 9 shared
Picchioni, Francesco
2 / 48 shared
Giannetti, Alice
1 / 2 shared
Mattoli, Virgilio
1 / 21 shared
Orozco, Felipe
2 / 5 shared
Moreno-Villoslada, Ignacio
1 / 7 shared
Araya-Hermosilla, Rodrigo
1 / 11 shared
Chart of publication period
2022
2021
2019

Co-Authors (by relevance)

  • Bose, Ranjita K.
  • Pucci, Andrea
  • Araya-Hermosilla, Esteban
  • Picchioni, Francesco
  • Giannetti, Alice
  • Mattoli, Virgilio
  • Orozco, Felipe
  • Moreno-Villoslada, Ignacio
  • Araya-Hermosilla, Rodrigo
OrganizationsLocationPeople

article

Production and Application of Polymer Foams Employing Supercritical Carbon Dioxide

  • De Macedo Rooweder Lima, Guilherme
  • Bose, Ranjita K.
Abstract

Polymeric foams have characteristics that make them attractive for different applications. However, some foaming methods rely on chemicals that are not environmentally friendly. One of the possibilities to tackle the environmental issue is to utilize supercritical carbon dioxide ScCO2 since it is a “green” solvent, thus facilitating a sustainable method of producing foams. ScCO2 is nontoxic, chemically inert, and soluble in molten plastic. It can act as a plasticizer, decreasing the viscosity of polymers according to temperature and pressure. Most foam processes can benefit from ScCO2 since the methods rely on nucleation, growth, and expansion mechanisms. Process considerations such as pretreatment, temperature, pressure, pressure drop, and diffusion time are relevant parameters for foaming. Other variables such as additives, fillers, and chain extenders also play a role in the foaming process. This review highlights the morphology, performance, and features of the foam produced with ScCO2, considering relevant aspects of replacing or introducing a novel foam. Recent findings related to foaming assisted by ScCO2 and how processing parameters influence the foam product are addressed. In addition, we discuss possible applications where foams have significant benefits. This review shows the recent progress and possibilities of ScCO2 in processing polymer foams.

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • Carbon
  • viscosity