People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Natrayan, Lakshmaiya
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Mechanical and Wear Behaviour of Nano-Fly Ash Particle-Reinforced Mg Metal Matrix Composites Fabricated by Stir Casting Techniquecitations
- 2022Interlaminar Shear, Bending, and Water Retention Behavior of Nano-SiO2 Filler-Incorporated Dharbai/Glass Fiber-Based Hybrid Composites under Cryogenic Environmentcitations
- 2022Influence the Graphene Filler Addition on the Tensile Behavior of Natural Kenaf Fiber-Based Hybrid Nanocompositescitations
- 2022Studies on Corrosion Behavior of Mg-Al-Zn-RE Cast Alloy with Powder-Coated Al and CED Mg by Salt Spray Test, Immersion Test, and Electrochemical Testcitations
- 2022Statistical Analysis on Interlaminar Shear Strength of Nanosilica Addition with Woven Dharbai/Epoxy Hybrid Nanocomposites under Cryogenic Environment by Taguchi Techniquecitations
- 2022An Artificial Neural Network Based Prediction of Mechanical and Durability Characteristics of Sustainable Geopolymer Compositecitations
Places of action
Organizations | Location | People |
---|
article
Statistical Analysis on Interlaminar Shear Strength of Nanosilica Addition with Woven Dharbai/Epoxy Hybrid Nanocomposites under Cryogenic Environment by Taguchi Technique
Abstract
<jats:p>Biocomposites are becoming more popular due to their capacity to replace artificial materials at a lower cost while enhancing environmental responsibility. In contrast, biocomposites have poor mechanical and interface properties. This research is aimed at determining the interlaminar shear strength of composite materials reinforced with Dharbai fibre and nanosilicon powder. The composites were made using a hand lay-up method with the following conditions: (i) weight % of nanosilica filler, (ii) thickness of fibre mat, and (iii) cryogenic treatment period, each at three different levels, to meet the goals mentioned above. The composites were laminated using a traditional hand lay-up method, and their interlaminar shear strength was determined using the ASTM standard. According to a recent study, nanocomposites containing 4% nanoscale silicon and 300 grammes per square metre of woven Dharbai fibre showed the highest interlaminar shear strength after 15 minutes of cryogenic treatment. Fibre content increased the mechanical properties of pure epoxy in general. As the fibre and filler concentrations grew, more energy was required to break the fibre bundles between the matrix and its resin. According to the ANOVA, the cryogenic treatment was the most significant factor, contributing up to 59.58%, followed by woven Dharbai mate, contributing 22.11%, and nanosilicon at 18.30%. SEM is used to investigate the cracked composites’ fractographic examination.</jats:p>