People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Velmurugan, G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Investigations of Flame Retardancy, Mechanical and Thermal Properties of Woven Hemp/PP Hybrid Composite for Insulating Material Reinforced with Synthetic Silicon and Zinc Oxidescitations
- 2023Functionalization of Fluorine on the Surface of SnO2–Mg Nanocomposite as an Efficient Photocatalyst for Toxic Dye Degradationcitations
- 2022Investigation on Interlaminar Shear Strength and Moisture Absorption Properties of Soybean Oil Reinforced with Aluminium Trihydrate-Filled Polyester-Based Nanocompositescitations
- 2022Effect of Mechanical Properties on Fibre Addition of Flax and Graphene-Based Bionanocompositescitations
- 2022Effect of Mechanical Properties on Fibre Addition of Flax and Graphene-Based Bionanocompositescitations
- 2022Interlaminar Shear, Bending, and Water Retention Behavior of Nano-SiO2 Filler-Incorporated Dharbai/Glass Fiber-Based Hybrid Composites under Cryogenic Environmentcitations
- 2022Optimisation of Graphene Nanofiller Addition on the Mechanical and Adsorption Properties of Woven Banana/Polyester Hybrid Nanocomposites by Grey-Taguchi Methodcitations
- 2022Statistical Analysis on Interlaminar Shear Strength of Nanosilica Addition with Woven Dharbai/Epoxy Hybrid Nanocomposites under Cryogenic Environment by Taguchi Techniquecitations
- 2022Influence of Nanosilica Particle Addition on Mechanical and Water Retention Properties of Natural Flax- and Sisal-Based Hybrid Nanocomposites under NaOH Conditionscitations
- 2022[Retracted] Investigation on Interlaminar Shear Strength and Moisture Absorption Properties of Soybean Oil Reinforced with Aluminium Trihydrate-Filled Polyester-Based Nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Statistical Analysis on Interlaminar Shear Strength of Nanosilica Addition with Woven Dharbai/Epoxy Hybrid Nanocomposites under Cryogenic Environment by Taguchi Technique
Abstract
<jats:p>Biocomposites are becoming more popular due to their capacity to replace artificial materials at a lower cost while enhancing environmental responsibility. In contrast, biocomposites have poor mechanical and interface properties. This research is aimed at determining the interlaminar shear strength of composite materials reinforced with Dharbai fibre and nanosilicon powder. The composites were made using a hand lay-up method with the following conditions: (i) weight % of nanosilica filler, (ii) thickness of fibre mat, and (iii) cryogenic treatment period, each at three different levels, to meet the goals mentioned above. The composites were laminated using a traditional hand lay-up method, and their interlaminar shear strength was determined using the ASTM standard. According to a recent study, nanocomposites containing 4% nanoscale silicon and 300 grammes per square metre of woven Dharbai fibre showed the highest interlaminar shear strength after 15 minutes of cryogenic treatment. Fibre content increased the mechanical properties of pure epoxy in general. As the fibre and filler concentrations grew, more energy was required to break the fibre bundles between the matrix and its resin. According to the ANOVA, the cryogenic treatment was the most significant factor, contributing up to 59.58%, followed by woven Dharbai mate, contributing 22.11%, and nanosilicon at 18.30%. SEM is used to investigate the cracked composites’ fractographic examination.</jats:p>