Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boening, Klaus

  • Google
  • 2
  • 9
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Novel Artificial Biofilm Equivalent for Denture Surfaces: A Pilot Study1citations
  • 2019Translucency of Zirconia Ceramics before and after Artificial Aging48citations

Places of action

Chart of shared publication
Meissner, Heike
1 / 4 shared
Kunze, Jan-Philipp
1 / 1 shared
Kresse-Walczak, Katarzyna
1 / 1 shared
Meißner, Heike
1 / 1 shared
Sakkas, Andreas
1 / 1 shared
Range, Ursula
1 / 1 shared
Konstantinidis, Ioannis
1 / 1 shared
Walczak, Katarzyna
1 / 8 shared
Wieckiewicz, Mieszko
1 / 5 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Meissner, Heike
  • Kunze, Jan-Philipp
  • Kresse-Walczak, Katarzyna
  • Meißner, Heike
  • Sakkas, Andreas
  • Range, Ursula
  • Konstantinidis, Ioannis
  • Walczak, Katarzyna
  • Wieckiewicz, Mieszko
OrganizationsLocationPeople

article

Novel Artificial Biofilm Equivalent for Denture Surfaces: A Pilot Study

  • Boening, Klaus
  • Meissner, Heike
  • Kunze, Jan-Philipp
  • Kresse-Walczak, Katarzyna
Abstract

The microbial population of the dental biofilm is embedded in an extracellular matrix that contains organic polymers such as polysaccharides. The extracellular matrix promotes biofilm adhesion on surfaces of dental prostheses and acts as a protective barrier. Thus, a breakdown of the extracellular matrix is crucial for an effective mechanical biofilm removal by brushing. The purpose of this study was to develop an artificial biofilm equivalent (ABE) that is able to mimic the mechanical properties of a natural biofilm concerning abrasion resistance. It contains the two polysaccharides chitosan (ChS) and methylcellulose (MC). Polymethylmethacrylate (PMMA) cylinders (n=80) were manufactured and coated with the ABE with varying concentration ratios of ChS and MC. Eight test series (n=8 each) with different mixing ratios of ChS/MC were tested for their abrasion resistance to brushing in a toothbrush simulator. For the ABE, a total of 2.0 g of polysaccharides were added to 100 ml of 2% acetic acid: 0.3–1.0 g ChS and 1.0–1.7 MC, respectively. Furthermore, two control series (n=8 each) with 2.0 g of ChS only or 2.0 g of MC only were performed. Coated specimens were subjected to an increasing number of brushing strokes from 5 to 45 via abrasion test. The specimens were photographed, and a computerized planimetric method (CPM) was used to calculate the percentage of remaining ABE on the brushed areas of the PMMA cylinders. The abrasion resistance of the ABE to brushing decreased with an increasing ratio of MC in the mixture. The abrasion resistance of the ABE can be adjusted by changing the ratio of ChS and MC.

Topics
  • impedance spectroscopy
  • surface
  • polymer