Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

V., Srikanth H.

  • Google
  • 1
  • 7
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Experimental Investigation on Density and Volume Fraction of Void, and Mechanical Characteristics of Areca Nut Leaf Sheath Fiber-Reinforced Polymer Composites21citations

Places of action

Chart of shared publication
Karthik, S. N.
1 / 2 shared
Shankar, G.
1 / 4 shared
Manjunath, N.
1 / 3 shared
Buradi, Abdulrajak
1 / 3 shared
Praveen Kumar, S.
1 / 2 shared
A., Praveena B.
1 / 1 shared
Rudra Naik, M.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Karthik, S. N.
  • Shankar, G.
  • Manjunath, N.
  • Buradi, Abdulrajak
  • Praveen Kumar, S.
  • A., Praveena B.
  • Rudra Naik, M.
OrganizationsLocationPeople

article

Experimental Investigation on Density and Volume Fraction of Void, and Mechanical Characteristics of Areca Nut Leaf Sheath Fiber-Reinforced Polymer Composites

  • Karthik, S. N.
  • Shankar, G.
  • V., Srikanth H.
  • Manjunath, N.
  • Buradi, Abdulrajak
  • Praveen Kumar, S.
  • A., Praveena B.
  • Rudra Naik, M.
Abstract

<jats:p>Natural fiber-reinforced polymer composite is a rapidly growing topic of research due to the simplicity of obtaining composites that is biodegradable and environmentally friendly. The resulting composites have mechanical properties comparable to synthetic fiber-reinforced composites. In this regard, the present work is formulated with the objectives related to the development, characterization, and optimization of the wt% of reinforcements and the process parameters. The novelty of this work is related to the identification and standardization of the appropriate wt% of reinforcements and parameters for the processing of the areca nut leaf sheath fiber-based polymer composites for enhanced performance attributes. With this basic purview and scope, the composites are synthesized using the hand layup process, and the composite samples of various fiber compositions (20%, 30%, 40%, and 50%) are fabricated. The mechanical characteristics of biodegradable polymer composites reinforced with areca nut leaf sheath fibers are investigated in the present work, with a focus on the effect of fiber composition (tensile properties, flexural strength, and impact strength). The properties of composites are enhanced by combining the areca nut leaf sheath fiber and epoxy resin, with a fiber content of 50% being the optimal wt%. The Scanning electron microscopy (SEM) investigations also ascertain this by depicting the good interfacial adhesion between the areca nut leaf sheath fiber and the epoxy resin. The tensile strength of the composite specimen reinforced with 50% areca nut fiber increases to 44.6 MPa, while the young’s modulus increases to 1900 MPa, flexural strength increases to 64.8 MPa, the flexural modulus increases to 37.9 GPa, and impact strength increases to 34.1 k J/m2. As a result, the combination of areca nut leaf sheath fiber reinforced epoxy resin shows considerable potential as a renewable and biodegradable polymer composite. Furthermore, areca nut leaf sheath fiber-reinforced epoxy resin composites are likely to replace petroleum-based polymers in the future. The ecosustainability and biodegradability of the composite specimen alongside the improved mechanical characteristics serve as the major highlight of the present work, and can help the polymer composite industry to further augment the synthetic matrix and fiber-based composites with the natural fiber-reinforced composites.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • scanning electron microscopy
  • strength
  • flexural strength
  • tensile strength
  • void
  • interfacial
  • resin
  • fiber-reinforced composite