People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Natrayan, Lakshmaiya
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Mechanical and Wear Behaviour of Nano-Fly Ash Particle-Reinforced Mg Metal Matrix Composites Fabricated by Stir Casting Techniquecitations
- 2022Interlaminar Shear, Bending, and Water Retention Behavior of Nano-SiO2 Filler-Incorporated Dharbai/Glass Fiber-Based Hybrid Composites under Cryogenic Environmentcitations
- 2022Influence the Graphene Filler Addition on the Tensile Behavior of Natural Kenaf Fiber-Based Hybrid Nanocompositescitations
- 2022Studies on Corrosion Behavior of Mg-Al-Zn-RE Cast Alloy with Powder-Coated Al and CED Mg by Salt Spray Test, Immersion Test, and Electrochemical Testcitations
- 2022Statistical Analysis on Interlaminar Shear Strength of Nanosilica Addition with Woven Dharbai/Epoxy Hybrid Nanocomposites under Cryogenic Environment by Taguchi Techniquecitations
- 2022An Artificial Neural Network Based Prediction of Mechanical and Durability Characteristics of Sustainable Geopolymer Compositecitations
Places of action
Organizations | Location | People |
---|
article
Mechanical and Wear Behaviour of Nano-Fly Ash Particle-Reinforced Mg Metal Matrix Composites Fabricated by Stir Casting Technique
Abstract
<jats:p>In recent years, magnesium-based alloys and composites have great attention in automobile, structural, and biomedical industries due to their desirable characteristics such as lower density, low elastic modulus, high specific strength, better damping properties, and excellent castability. The pure magnesium was used as a matrix material and reinforced with fly ash fillers of different compositions with a weight percentage of 2.5%, 5%, and 7.5% to compare with the pure magnesium. The three different weights (wt%) of fly ash/Mg samples were prepared using the bottom pouring stir casting method. Fabricated samples sliding wear characteristics and mechanical behaviour (ASTM standard) were studied. Wear, tensile, and hardness results portray that 7.5 wt% fly ash composites possess better elongation and hardness and good wear resistance. The tensile strength values were improved by 42% in sample 4 compared with pure Mg. Hardness values were also improved by 21% in sample 4 compared with pure Mg. The wear rate and coefficient of friction are also reduced by the increased weight percentage of fly ash reinforcement. SEM images display casted pure magnesium’s morphology and wear-tested samples’ worn surface characteristics.</jats:p>