Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bahatheq, Aisha

  • Google
  • 1
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Generation and Characterization of Silver Nanoparticles in Mentha pulegium Extract and Evaluation of Biological Activities of the Prepared Extract11citations

Places of action

Chart of shared publication
Alzaban, Mayasar
1 / 2 shared
Al-Zaben, Maha
1 / 1 shared
Alharbi, Nada
1 / 2 shared
Naghmouchi, Souheila
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Alzaban, Mayasar
  • Al-Zaben, Maha
  • Alharbi, Nada
  • Naghmouchi, Souheila
OrganizationsLocationPeople

article

Generation and Characterization of Silver Nanoparticles in Mentha pulegium Extract and Evaluation of Biological Activities of the Prepared Extract

  • Bahatheq, Aisha
  • Alzaban, Mayasar
  • Al-Zaben, Maha
  • Alharbi, Nada
  • Naghmouchi, Souheila
Abstract

<jats:p>The aim of the present study was to synthesize silver nanoparticles (AgNPs) using Saudi Mentha pulegium leaves, to characterize the physicochemical properties of the resulting AgNPs, and to evaluate the biological activities of the resulting AgNP-containing extract. The formation of AgNPs in M. pulegium extract was indicated by a change in color following the addition of silver nitrate and was confirmed using UV-visible spectroscopy with a maximum absorbance at 425 nm. Energy dispersive X-ray spectroscopy (EDX) indicated that the anisotropic AgNPs were spherical, and Fourier transform infrared spectroscopy (FTIR) spectral analysis indicated that the aqueous M. pulegium extracts were responsible for reducing Ag+ to Ag0. The secondary metabolite contents of the methanolic M. pulegium extract corresponded to 17 mg GAE/g DW. DPPH and ABT radical-scavenging assays indicated that the M. pulegium extracts possessed antioxidant activity (<jats:inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"><mtext>I</mtext><msub><mrow><mtext>C</mtext></mrow><mrow><mn>50</mn></mrow></msub><mo>=</mo><mn>6</mn></math></jats:inline-formula> and 3 μg/mL, respectively). Disc and broth dilution assays revealed that the extracts exerted significant antibacterial activity, with the inhibition zone diameters and minimal inhibition concentrations of 17–24 mm and 0.08–0.62 mg/mL, respectively. These findings clearly indicate that modified plant extracts have high biological importance and potential use as preservatives in the pharmaceutical and food industries.</jats:p>

Topics
  • nanoparticle
  • silver
  • anisotropic
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy