Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rao, A. Padma

  • Google
  • 2
  • 8
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Potentiodynamic Corrosion Behavior and Microstructural Characteristics of Pulsed CMT-Welded AA2014-T6 Aluminium Alloy Joints: Effect of PWHT9citations
  • 2022Potentiodynamic Corrosion Behavior and Microstructural Characteristics of Pulsed CMT-Welded AA2014-T6 Aluminium Alloy Joints: Effect of PWHT9citations

Places of action

Chart of shared publication
Tushar, Sonar
1 / 1 shared
Ivanov, Mikhail
1 / 7 shared
Rajendran, C.
1 / 4 shared
Hadi, Manzoor
2 / 2 shared
Krishna, V. Murali
2 / 4 shared
Kumar, P. Senthil
1 / 5 shared
Chinnasamy, Rajendran
1 / 4 shared
Kumar, Dr P. Senthil
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Tushar, Sonar
  • Ivanov, Mikhail
  • Rajendran, C.
  • Hadi, Manzoor
  • Krishna, V. Murali
  • Kumar, P. Senthil
  • Chinnasamy, Rajendran
  • Kumar, Dr P. Senthil
OrganizationsLocationPeople

article

Potentiodynamic Corrosion Behavior and Microstructural Characteristics of Pulsed CMT-Welded AA2014-T6 Aluminium Alloy Joints: Effect of PWHT

  • Chinnasamy, Rajendran
  • Hadi, Manzoor
  • Kumar, Dr P. Senthil
  • Krishna, V. Murali
  • Rao, A. Padma
Abstract

<jats:p>AA2014-T6 is an Al-Cu-Mg-based precipitation-hardened aluminium alloy widely used in aerospace due to its high strength to weight ratio. This alloy is joined by a pulsed cold metal transfer (PCMT) arc welding process to overcome the high heat input related problems in gas metal arc welding (GMAW) such as a coarser dendritic structure in the fusion zone (FZ), wider heat affected zone (HAZ), solidification and HAZ liquation cracking, softening in HAZ, and poor corrosion resistance of welded joints in salt environment. The joints were subjected to PWHT of artificial aging (AA), solution treatment (ST), and solution treatment + aging (STA) conditions. The corrosion rate was determined using a potentiodynamic corrosion test in a solution of 3.56 wt.% NaCl with pH values of 4, 7, and 11. Results disclosed that the PCMT joints subjected to the potentiodynamic corrosion test in NaCl solution of pH-4, pH-7, and pH-11 disclosed very low, moderate, and extremely high pitting corrosion, respectively. The corrosion resistance of ST joints was improved by 53.34%, 15%, and 15.12% in pH-4, pH-7, and pH-11 NaCl solution compared to as-welded joints. The pitting potential of ST joints is comparable to BM. The BM showed the pitting potential of −175, −450, and −550 mV in pH-4, pH-7, and pH-11 NaCl solution. The ST joints showed 75.29%, 29.16%, and 27.85% lower corrosion potential compared to STA joints in pH-4, pH-7, and pH-11 NaCl solution, respectively. The ST joints disclosed the lower pitting potential of −105, −425, and −505 mV in pH-4, pH-7, and pH-11 NaCl solution, respectively, whereas the STA joints revealed greater pitting potential of −425, −600, and −700 mV in pH-4, pH-7, and pH-11 NaCl solution, respectively. The superior corrosion resistance of ST joints compared to AA and STA joints is attributed to the dissolution of precipitates in Al solid solution resulting in a lower potential difference in FZ. This minimizes the preferential sites for pitting corrosion to occur.</jats:p>

Topics
  • impedance spectroscopy
  • aluminium
  • strength
  • pitting corrosion
  • aluminium alloy
  • precipitate
  • precipitation
  • aging
  • aging
  • pH value