Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mejri, Chadha

  • Google
  • 3
  • 4
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Enhancement of Photocatalytic Activity and Microstructural Growth of Cobalt-Substituted Ba1−xCoxTiO3 {x = 0, …, 1} Heterostructure4citations
  • 2022Impact of Uniaxial Mechanical Perturbation on Structural Properties and Smectite Porosity Features: Ion Exchanger Efficiency and Adsorption Performance Fate6citations
  • 2022Impact of Uniaxial Mechanical Perturbation on Structural Properties and Smectite Porosity Features: Ion Exchanger Efficiency and Adsorption Performance Fate6citations

Places of action

Chart of shared publication
Amara, Abdesslem Ben Haj
2 / 6 shared
Oueslati, Walid
2 / 3 shared
Meftah, Mahdi
1 / 1 shared
Jebali, Sana
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Amara, Abdesslem Ben Haj
  • Oueslati, Walid
  • Meftah, Mahdi
  • Jebali, Sana
OrganizationsLocationPeople

article

Impact of Uniaxial Mechanical Perturbation on Structural Properties and Smectite Porosity Features: Ion Exchanger Efficiency and Adsorption Performance Fate

  • Mejri, Chadha
Abstract

<jats:p>The use of montmorillonite in the context of engineered barriers makes it possible to minimize the spread of heavy metals from industrial and even radioactive waste. An evaluation of the performance of the mechanisms controlling the clay-environment interaction and predicting the dynamics/configuration of the interlayer space (IS) is required. This work focuses on a quantitative identification of the structural changes and porosity alteration in the case of heavy metal-exchanged montmorillonite samples (Co2+ and Cd2+ cations) undergoing mechanical stresses (uniaxial oedometric test (loading/unloading)). Relationships between mechanical stress strength, intrinsic structural response, ion exchanger efficiency, and adsorption performance fate are investigated. This goal is achieved through the correlation of in situ quantitative X-ray diffraction (XRD) analysis (under an extremely controlled atmosphere reached by varying relative humidity rate %rh) and porosity investigation (assured by combining outcomes from BET (Brunauer–Emmett–Teller) and BJH- (Barrett, Joyner, and Halenda-) PSD (pore size distribution) analysis). Obtained results show an upsurge in the structural heterogeneities accompanying the theoretical increase in the mixed layer structure (MLS) number and developing an unconventional hydration behaviour after stress relaxation regardless of exchangeable cation nature. Experimental XRD patterns are reproduced using MLS, which suggests the coexistence of more than one “crystallite” specie and more than one exchangeable cation indicating a complex cation exchange capacity (CEC) saturation. For extremely low %rh value, a new homogeneous dehydrated state trend is observed in the case of the Co2+ cation. Porosity analysis shows mesopore volume growth for the stressed sample and confirms crystallite exfoliation layer trends, results of the layer cohesion damage, and subsequent constraint strength fluctuations.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • x-ray diffraction
  • strength
  • porosity