Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yidris, Noorfaizal

  • Google
  • 2
  • 7
  • 239

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies130citations
  • 2020Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review109citations

Places of action

Chart of shared publication
Ilyas, R. A.
2 / 29 shared
Asyraf, M. R. M.
1 / 4 shared
Sapuan, S. M.
1 / 18 shared
Ishak, Mohamad Ridzwan
1 / 6 shared
Rizal, Muhammad Asyraf Muhammad
1 / 9 shared
Razman, Muhammad Rizal
1 / 2 shared
Rafidah, M.
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ilyas, R. A.
  • Asyraf, M. R. M.
  • Sapuan, S. M.
  • Ishak, Mohamad Ridzwan
  • Rizal, Muhammad Asyraf Muhammad
  • Razman, Muhammad Rizal
  • Rafidah, M.
OrganizationsLocationPeople

article

Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review

  • Ilyas, R. A.
  • Rizal, Muhammad Asyraf Muhammad
  • Razman, Muhammad Rizal
  • Rafidah, M.
  • Yidris, Noorfaizal
Abstract

Recently, advanced technologies exploit materials from nonrenewable resources such as petroleum, natural gas, metal ores, and minerals. Since the depletion of these resources and environmental issues, it has brought attention to researchers to progress in the development of biodegradable materials from green composites. Most biofibres and biopolymers are obtained from agricultural waste products either from stem, leaf, stalk, or fruit. Nowadays, green composites with well-regulated life span have been widely discussed in numerous fields and applications. Some studies have shown that biofibres and biopolymers have comparable mechanical, thermal, and physical properties with glass fibre and other synthetic polymers. Thus, researchers are progressively narrowing down the development of green composite materials in many high strength applications, such as house deck and automotive components. This review focuses on the background of green composites (natural fibres and biopolymers), the manufacturing processes, potential applications in cross arm structures, and testing evaluations. This article also focuses on the specific current cross arm configurations and the pultrusion process to form squared hollow section beams. Many open issues and ideas for potential applications of green composites are analysed, and further emphases are given on the development of environmentally friendly material structures. Hence, the article is expected to deliver a state-of-art review on manufacturability and perspectives of natural fibre reinforced biopolymer composite cross arms for transmission towers.

Topics
  • impedance spectroscopy
  • mineral
  • polymer
  • glass
  • glass
  • strength
  • biological composite