People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nia, Pooria Moozarm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Polypyrrole-Chitosan-CaFe2O4 Layer Sensor for Detection of Anionic and Cationic Dye Using Surface Plasmon Resonancecitations
- 2020Polypyrrole-Chitosan-CaFe2O4 Layer Sensor for Detection of Anionic and Cationic Dye Using Surface Plasmon Resonancecitations
- 2020Surface Plasmon Resonance Sensor Based on Polypyrrole–Chitosan–BaFe2O4 Nanocomposite Layer to Detect the Sugarcitations
- 2016Flexible supercapacitor based on electrochemically synthesized pyrrole formyl pyrrole copolymer coated on carbon microfiberscitations
- 2015Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensorcitations
- 2015A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano compositescitations
- 2015Nanocomposites of nitrogen-doped graphene decorated with a palladium silver bimetallic alloy for use as a biosensor for methotrexate detectioncitations
- 2015Nanocomposites of nitrogen-doped graphene decorated with a palladium silver bimetallic alloy for use as a biosensor for methotrexate detectioncitations
- 2015A novel method for fabricating Fe2+ ion selective sensor using polypyrrole and sodium dodecyl sulfate based on carbon screen-printed electrodecitations
- 2015One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensorcitations
- 2015One-step preparation of silver-polyaniline nanotube composite for non-enzymatic hydrogen peroxide detectioncitations
Places of action
Organizations | Location | People |
---|
article
Polypyrrole-Chitosan-CaFe2O4 Layer Sensor for Detection of Anionic and Cationic Dye Using Surface Plasmon Resonance
Abstract
A polypyrrole-chitosan-calcium ferrite nanocomposite was prepared using the electrodeposition method. The prepared layer was characterized by using Fourier transform infrared spectroscopy, the X-ray diffraction technique, and field emission electron microscopy. The thickness of the thin layers was in the range of 2.8 nm to 59.5 nm, and the refractive index of the composite layer was in the range of to . Detection and removal of cationic and anionic dyes, such as methylene blue and methylene orange, are subject of great interest for protecting environmental water. The layer composite was used to detect methylene orange and methylene blue using the surface plasmon resonance technique. Consequently, the polypyrrole-chitosan-calcium-ferrite composite layer interacted with the anionic and cationic dyes. The resonance angle shift for the detection of the cationic dye was larger than the resonance angle shift for the anionic dye. The sensor limit was achieved from a sensogram at about 0.01 ppm.