People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Papatzani, Styliani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortarscitations
- 2021Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates
- 2020A step by step methodology for building sustainable cementitious matricescitations
- 2019Optimization of low carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particlescitations
- 2019Permeable nanomontmorillonite and fibre reinforced cementitious binderscitations
- 2019ICE Themes Low Carbon Concrete
- 2019From Nanostructural Characterization of Nanoparticles to Performance Assessment of Low Clinker Fibre-Cement Nanohybridscitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano-montmorillonite cementitious nanocompositescitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano- montmorillonite cementitious nanocompositescitations
- 2018Lowering cement clinker:citations
- 2018Lowering cement clinker::A thorough, performance based study on the use of nanoparticles of SiO2 or montmorillonite in Portland limestone nanocompositescitations
- 2018Polycarboxylate / nanosilica modified quaternary cement formulations - enhancements and limitationscitations
- 2017Construction, demolition and excavation waste management in EU/Greece and its potential use in concrete
- 2017Inorganic and organomodified nano-montmorillonite dispersions for use as supplementary cementitious materialscitations
- 2016Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructurecitations
- 2015Dispersed Inorganic or Organomodified Montmorillonite Clay Nanoparticles for Blended Portland Cement Pastescitations
- 2015Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systemscitations
- 2015RC structural walls under cyclic loading - Experimental verification of code overestimation of transverse reinforcement reduction potentials
- 2015A comprehensive review of the models on the nanostructure of calcium silicate hydratescitations
- 2014The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
- 2014Прочность и микроструктура цементного камня c добавками коллоидного SiO2
Places of action
Organizations | Location | People |
---|
article
Optimization of low carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particles
Abstract
The dispersion medium of nano-SiO 2 (nS) particles can have a significant effect on the properties of nanoparticles themselves and consequently on the cement binders it will be added to. In this paper, nS particles dispersed in (a) polycarboxylate or (b) water were added to a low-carbon footprint reference binder containing 43% Portland cement (PC), 20% limestone powder (LS), and 37% fly ash (FA) by mass of binder. Eight quaternary binders containing nS, PC, LS, and FA and eight quinary binders comprising nS, PC, LS, FA, and silica fume (μS) were investigated. nS was added at 0.1%, 0.2%, 0.5%, or 1.0% by mass of binder as a replacement of LS for the quaternary binders and at 0.5% or 1.0% for the quinary binders. The nanoparticles were examined via transmission and X-ray scanning electron microscopy (TEM/SEM/EDX). For the pastes, compressive strength tests and thermal gravimetric analyses (TGAs) were performed at days 1, 7, 28, and 56, all testified to additional pozzolanic activity and additional C-S-H production. X-ray diffraction analyses and backscattered scanning electron imaging carried out on specific formulations also confirmed this finding at days 1, 28, and 56. Notwithstanding the additional pozzolanic reactivity, nS particles could not mitigate the delayed hydration of the reference paste in the early ages. In such complex formulations, the hydration products seem to create a wrapping around the FA particles delaying their activation at early ages. At later ages, the 0.5% nS addition provided strength, microstructural, and hydration improvements. The polycarboxylate/nS particles provided more pronounced strength improvements at 0.5% addition, possibly due to their superplasticizing effect. Lastly, a tabulated literature review on the thermal decomposition ranges of the hydration products of cementitious nanocomposites is also presented. <br/>