People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Macutkevic, Jan
Center for Physical Sciences and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Multilayered Composites with Carbon Nanotubes for Electromagnetic Shielding Applicationcitations
- 2022Dielectric Properties of Hybrid Polyethylene Composites Containing Cobalt Nanoparticles and Carbon Nanotubescitations
- 2022Tannin-based resins for 3D printing of porous carbon architecturescitations
- 2022Electrical conductivity and dielectric relaxation in Ag1-xLixNbO3citations
- 2022Electrical Conductivity and Dielectric Relaxation in Ag1−xLixNbO3citations
- 2021Dielectric properties of PDMS composites filled with SrTiO 3 nanoparticlescitations
- 2021Fibers of Thermoplastic Copolyamides with Carbon Nanotubes for Electromagnetic Shielding Applicationscitations
- 2021Dielectric Relaxation Spectroscopy and Synergy Effects in Epoxy/MWCNT/Ni@C Compositescitations
- 2020Crossover from Ferroelectric to Relaxor Behavior in Ba1−xCaxTiO3 (x = 0.17) Systemcitations
- 2020Dielectric Relaxation in the Hybrid Epoxy/MWCNT/MnFe2O4 Compositescitations
- 2020Electrical percolation and electromagnetic properties of polydimethylsiloxane composites filled with Ag nanoparticles of different sizescitations
- 2020THz Spectroscopy as a Versatile Tool for Filler Distribution Diagnostics in Polymer Nanocompositescitations
- 2019Fine Tuning of Electrical Transport and Dielectric Properties of Epoxy/Carbon Nanotubes Composites via Magnesium Oxide Additivescitations
- 2019Electromagnetic Properties of Carbon Gelscitations
- 2019Broadband Dielectric Properties of Fe<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O Nanorods/Epoxy Resin Compositescitations
- 2019Electromagnetics of carbon: Nano versus microcitations
- 2019Broadband Dielectric Properties of Fe2O3·H2O Nanorods/Epoxy Resin Compositescitations
- 2019Dielectric Properties of Epoxy-Matrix Composites with Tungsten Disulfide Nanotubescitations
- 2018Size-dependent electrical and thermal properties of onion-like carbons / polyurethane compositescitations
- 2018Influence of carbon nanotube surface treatment on resistivity and low‐frequency noise characteristics of epoxy‐based compositescitations
- 2018Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubescitations
- 2015Ultrasonic and dielectric relaxations in PDMS/ZnO nanocompositecitations
- 2015Synergy effects in the electrical conductivity behavior of onion-like carbon and multiwalled carbon nanotubes compositescitations
- 2014Dielectric properties of graphite-based epoxy compositescitations
- 2010Terahertz sensing with carbon nanotube layers coated on silica fibers: Carrier transport versus nanoantenna effectscitations
Places of action
Organizations | Location | People |
---|
article
Dielectric Properties of Epoxy-Matrix Composites with Tungsten Disulfide Nanotubes
Abstract
Addition of conductive nanotubes to an insulating polymer matrix has been proven as an efficient strategy that can improve the electromagnetic shielding performance, due to the high aspect ratio of nanotubes. Herein, a set of epoxy-matrix composites filled with 0.15-1.6 vol% of tungsten disulfide (WS2) nanotubes being of 30-120 nm in diameter and 5-20 μm in length has been produced. Electromagnetic properties of the prepared composites were probed in the frequency range from 20 Hz to 1 MHz in a temperature range from 250 K to 500 K. Broadband properties of these materials are controlled by the dynamics of epoxy resin molecules, and no electrical percolation was observed up to the highest concentration (1.6 vol%) of WS2 nanotubes. The value of dielectric permittivity for all composites is not bigger than 6 at room temperature and 1 kHz frequency, and the electrical conductivity of composites is about 10-6 S/m at 500 K, which demonstrate that the composites are suitable for antistatic applications at higher temperatures. The relaxation time follows the Vogel-Fulcher law, and the Vogel temperature T0 has the minimum for the WS2 nanotube concentration 0.15 vol%. Above 410 K, the electrical conductivity determines the properties of the investigated composites due to nonzero electrical conductivity of epoxy resin. The value of DC electrical conductivity for pure epoxy at T=450 K is 0.3 μS/m, while the DC conductivity of the composites slightly increases with the WS2 concentration. Therefore, the electrical contacts between WS2 nanotubes and polymer matrix are rather ohmic. Additionally, the activation energy is almost independent on the concentration of WS2. However, it is higher in composites than in pure epoxy resin.