People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahmani, Ramin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Structural analysis of selective laser melted copper-tin alloycitations
- 2023Additive Manufacturing Integrated Technologies Applied to Human Machine Interfaces: An Industry 5.0 Overview
- 2023Overview of Selective Laser Melting for Industry 5.0: Toward Customizable, Sustainable, and Human-Centric Technologiescitations
- 2022Hybrid metal-ceramic biomaterials fabricated through powder bed fusion and powder metallurgy for improved impact resistance of craniofacial implantscitations
- 2022Solid Lubrication at High-Temperatures—A Reviewcitations
- 2022Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfacescitations
- 2021The Impact Resistance of Highly Densified Metal Alloys Manufactured from Gas-Atomized Pre-Alloyed Powderscitations
- 2019Mechanical Behavior of Ti6Al4V Scaffolds Filled with CaSiO3 for Implant Applicationscitations
- 2019Comparison of Mechanical and Antibacterial Properties of TiO2/Ag Ceramics and Ti6Al4V-TiO2/Ag Composite Materials Using Combined SLM-SPS Techniquescitations
- 2019Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Studycitations
- 2019Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Studycitations
- 2019Wear Resistance of (Diamond-Ni)-Ti6Al4V Gradient Materials Prepared by Combined Selective Laser Melting and Spark Plasma Sintering Techniquescitations
- 2018Asperity level tribological investigation of automotive bore material and coatingscitations
- 2017Asperity level tribological investigation of automotive bore material and coatings
Places of action
Organizations | Location | People |
---|
article
Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Study
Abstract
<jats:p>Materials with higher wear resistance are required in various applications including cutting elements (drag bits) of soft ground tunnel boring machines (TBM) to increase the productivity and to reduce the risk for workers involved in exchange operations (dangerous hyperbolic conditions). In recent work, two types of materials were produced by combining 3D printing (selective laser melting, SLM) of cellular lattice structures and spark plasma sintering (SPS) methods. The lattices were printed from (1) 316L stainless steel with diamond and (2) Ti6Al4V with nitriding. The effect of diamond content (5%, 10%, and 20%; nickel-coated particles) and unit cell size on performance was studied. The titanium alloy lattice was nitrided to increase its hardness and wear resistance. The effect of nitriding temperature (750°C, 900°C, and 1050°C) and lattice volume fraction (6%, 15%, and 24%, vol.) was investigated, and the optimized conditions were applied. The lattices were filled with 316L and Ti6Al4V powders, respectively, and consolidated by SPS. Samples were tested with the help of laboratory impact-abrasive tribodevice. Laboratory results have shown that both reinforcing approaches are beneficial and allow improvement of wear resistance in impact-abrasive conditions with great potential for TBM or similar applications. Modelling with the help of finite element method has shown that lattice structure enables reduction of peak local stresses in scratching and impact conditions.</jats:p>