People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pinto Da Silva, Cassio Augusto
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Fe-Containing Al-Based Alloys: Relationship between Microstructural Evolution and Hardness in an Al-Ni-Fe Alloycitations
- 2023Influence of Minor Additions of Be on the Eutectic Modification of an Al-33wt.%Cu Alloy Solidified under Transient Conditionscitations
- 2018Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidifiedcitations
Places of action
Organizations | Location | People |
---|
article
Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified
Abstract
<jats:p>This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (<jats:italic>V</jats:italic><jats:sub>L</jats:sub> and <jats:italic>T</jats:italic><jats:sub>R</jats:sub>) and secondary dendrite spacing (<jats:italic>λ</jats:italic><jats:sub>2</jats:sub>), respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of <jats:italic>λ</jats:italic><jats:sub>2</jats:sub> on <jats:italic>V</jats:italic><jats:sub>L</jats:sub> and <jats:italic>T</jats:italic><jats:sub>R</jats:sub> and dependence of the maximum cutting temperature and maximum flank wear on <jats:italic>λ</jats:italic><jats:sub>2</jats:sub> were determined by power experimental laws given by <jats:italic>λ</jats:italic><jats:sub>2</jats:sub> = constant (<jats:italic>V</jats:italic><jats:sub>L</jats:sub> and <jats:italic>T</jats:italic><jats:sub>R</jats:sub>)<jats:sup><jats:italic>n</jats:italic></jats:sup> and <jats:italic>T</jats:italic><jats:sub>MAX</jats:sub>, <jats:italic>V</jats:italic><jats:sub>BMAX</jats:sub> = constant (<jats:italic>λ</jats:italic><jats:sub>2</jats:sub>)<jats:sup><jats:italic>n</jats:italic></jats:sup>, respectively. The maximum cutting temperature increased with increasing of <jats:italic>λ</jats:italic><jats:sub>2</jats:sub>. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.</jats:p>