People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moreira, Pmgp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Experimental and numerical study of the dynamic response of an adhesively bonded automotive structurecitations
- 2019Oxidative Treatment of Multi-Walled Carbon Nanotubes and its Effect on the Mechanical and Electrical Properties of Green Epoxy based Nano-Compositescitations
- 2018Parameter optimisation of friction stir welded dissimilar polymers jointscitations
- 2016Mixed-mode fatigue crack propagation rates of current structural steels applied for bridges and towers construction
- 2016Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closurecitations
- 2016Fatigue crack growth behaviour of the 6082-T6 aluminium using CT specimens with distinct notchescitations
- 2016Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Modelcitations
- 2015Fatigue life prediction based on crack growth analysis using an equivalent initial flaw size model: Application to a notched geometrycitations
- 2015Ultimate tensile strength optimization of different FSW aluminium alloy jointscitations
- 2014Friction stir welded T-joints optimizationcitations
- 2014Friction stir welded butt joints optimizationcitations
- 2013A Contribution to the Mechanical Characterization of Cu ETP Used in the Electric Motors Industry
- 2012Fatigue and fracture behaviour of friction stir welded aluminium-lithium 2195citations
- 2010Fibre Bragg grating sensors for monitoring the metal inert gas and friction stir welding processescitations
- 2008A study on the effects of dented surfaces on rolling contact fatiguecitations
- 2008Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparisoncitations
- 2007Assessment of the fatigue behaviour of friction stir welded joints: Aluminium alloy 6082-T6
- 2007Fatigue behaviour of FSW and MIG weldments for two aluminium alloyscitations
- 2007Temperature field acquisition during gas metal arc welding using thermocouples, thermography and fibre Bragg grating sensorscitations
Places of action
Organizations | Location | People |
---|
article
Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Model
Abstract
Structural design taking into account fatigue damage requires a thorough knowledge of the behaviour of materials. In addition to the monotonic behaviour of the materials, it is also important to assess their cyclic response and fatigue crack propagation behaviour under constant and variable amplitude loading. Materials whenever subjected to fatigue cracking may exhibit mean stress effects as well as crack closure effects. In this paper, a theoretical model based on the same initial assumptions of the analytical models proposed by Hudak and Davidson and Ellyin is proposed to estimate the influence of the crack closure effects. This proposal based further on Walker's propagation law was applied to the P355NL1 steel using an inverse analysis (back-extrapolation) of experimental fatigue crack propagation results. Based on this proposed model it is possible to estimate the crack opening stress intensity factor, K-op, the relationship between U = Delta K-eff/Delta K quantity and the stress intensity factor, the crack length, and the stress ratio. This allows the evaluation of the influence of the crack closure effects for different stress ratio levels, in the fatigue crack propagation rates. Finally, a good agreement is found between the proposed theoretical model and the analytical models presented in the literature.