People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alfadhel, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2016Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Deliverycitations
- 2016A Magnetoresistive Tactile Sensor for Harsh Environment Applicationscitations
- 2016Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applicationscitations
- 2016Magnetic Nanocomposite Cilia Energy Harvestercitations
- 2016Fabrication and characterization of magnetic composite membrane pressure sensorcitations
- 2016Tunable magnetic nanowires for biomedical and harsh environment applicationscitations
- 2016A single magnetic nanocomposite cilia force sensorcitations
- 2016Magnetic nanocomposite sensor
- 2016Magnetic Tactile Sensor for Braille Readingcitations
- 2015Magnetic Nanocomposite Cilia Tactile Sensorcitations
- 2015Biomimetic magnetic nanocomposite for smart skinscitations
- 2015Magnetoelectric polymer nanocomposite for flexible electronicscitations
- 2015Magnetic micropillar sensors for force sensingcitations
- 2014Magnetic polymer nanocomposites for sensing applicationscitations
- 2014A magnetic nanocomposite for biomimetic flow sensingcitations
- 2012Microfabrication of magnetostrictive beams based on NiFe film doped with B and Mo for integrated sensor systemscitations
Places of action
Organizations | Location | People |
---|
article
Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery
Abstract
Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500 µm at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.