People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boos, Anne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studiescitations
- 2023Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studiescitations
- 2023Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies.citations
- 2019Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles.citations
- 2015Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid) in the Presence of Copper (II)citations
Places of action
Organizations | Location | People |
---|
article
Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid) in the Presence of Copper (II)
Abstract
<jats:p>Potentiometric titration of poly(acrylic acid) and hydroquinone-functionalized poly(acrylic acid) was conducted in the presence of copper (II). The effects of hydroquinone functionalizing and copper (II) complexing on the potentiometric titration of poly(acrylic acid) were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-)complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-)polymer complexes.</jats:p>