People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manan, Ninie Suhana Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2015One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensorcitations
- 2015Conductivity and Dielectric Studies of Lithium Trifluoromethanesulfonate Doped Polyethylene Oxide-Graphene Oxide Blend Based Electrolytescitations
- 2015One-step preparation of silver-polyaniline nanotube composite for non-enzymatic hydrogen peroxide detectioncitations
Places of action
Organizations | Location | People |
---|
article
Conductivity and Dielectric Studies of Lithium Trifluoromethanesulfonate Doped Polyethylene Oxide-Graphene Oxide Blend Based Electrolytes
Abstract
<jats:p>Series of polymer blend consisting of polyethylene oxide (PEO) and graphene oxide (GO) as co-host polymer were prepared using solution cast method. The most amorphous PEO-GO blend was obtained using 90 wt.% of PEO and 10 wt.% of GO as recorded by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FTIR) analysis proved the interaction between PEO, GO, lithium trifluoromethanesulfonate (LiCF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub>), and ethylene sulfite (ES). Incorporation of 25 wt.% LiCF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub>into the PEO-GO blend increases the conductivity to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mfenced separators="|"><mml:mrow><mml:mn>3.84</mml:mn><mml:mo>±</mml:mo><mml:mn>0.83</mml:mn></mml:mrow></mml:mfenced><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:msup></mml:math> S cm<jats:sup>−1</jats:sup>. The conductivity starts to decrease when more than 25 wt.% salt is doped into the polymer blend. The addition of 1 wt.% ES into the polymer electrolyte has increased the conductivity to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mfenced separators="|"><mml:mrow><mml:mn>1.73</mml:mn><mml:mo>±</mml:mo><mml:mn>0.05</mml:mn></mml:mrow></mml:mfenced><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup></mml:math> S cm<jats:sup>−1</jats:sup>. Dielectric studies show that all the electrolytes obey non-Debye behavior.</jats:p>