Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Irorere, V. U.

  • Google
  • 1
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Electrospun fibres of polyhydroxybutyrate synthesized by ralstonia eutropha from different carbon sources15citations

Places of action

Chart of shared publication
Stamboulis, Artemis
1 / 27 shared
Blevins, Mark
1 / 5 shared
Bagherirasl, Soroosh
1 / 1 shared
Radecka, I.
1 / 1 shared
Kwiecien, I.
1 / 2 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Stamboulis, Artemis
  • Blevins, Mark
  • Bagherirasl, Soroosh
  • Radecka, I.
  • Kwiecien, I.
OrganizationsLocationPeople

article

Electrospun fibres of polyhydroxybutyrate synthesized by ralstonia eutropha from different carbon sources

  • Stamboulis, Artemis
  • Blevins, Mark
  • Irorere, V. U.
  • Bagherirasl, Soroosh
  • Radecka, I.
  • Kwiecien, I.
Abstract

The properties of PHB may be affected by the carbon source used in its production and this may affect nanofibres made from this polymer by electrospinning. In this study, P(3-HB) was produced from glucose, rapeseed oil, and olive oil by Ralstonia eutropha H16. Cell growth and polymer production were higher in olive or rapeseed oil supplemented media compared to glucose supplemented media. FT-IR, ¹H-, ¹³C-NMR, and ESI/MSn confirmed that the synthesized polymers were P(3-HB). SEM micrograph showed the formation of nanofibres from P(3-HB) samples with the fibre diameters dependent on the source of the carbon used in polymer synthesis and the concentration of the polymer in the electrospinning solution. GPC showed that P(3-HB) from glucose (G-PHB) had a higher molecular weight (7.35x10 gmol¯¹) compared to P(3-HB) from rapeseed (R-PHB) and olive (O-PHB) oil. Differential scanning calorimetry (DSC) showed that the crystallinity of the electrospun polymers reduces with decreasing polymer concentration with R-PHB having lower crystallinity at all concentrations used. These observation shows that more PHB yield can be obtained using either rapeseed or olive oil compared to glucose with glucose producing polymers of higher molecular weight. It also show that electrospinning could be used to reduce the crystallinity of PHB fibres.

Topics
  • polymer
  • Carbon
  • scanning electron microscopy
  • differential scanning calorimetry
  • molecular weight
  • Nuclear Magnetic Resonance spectroscopy
  • crystallinity
  • electrospinning
  • electrospray ionisation