People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carlo, Hugo Lemes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of glass fiber incorporation on flexural properties of experimental composites
Abstract
<p>This study evaluated the effect of fiber addiction in flexural properties of 30 wt% silica filled BisGMA resin (FR) or unfilled Bis-GMA (UR). Ten groups were created (N = 10) varying the resin (FR or UR) and quantity of glass fibers (wt%: 0, 10, 15, 20, and 30). Samples (10 × 2 × 1 mm) were submitted to flexural strength test following SEM examination. Data were analyzed by two-way ANOVA, Tukey, and Student t-test (α = 0.05). Results for flexural strength (MPa) were FR-groups: 0% (442.7 ± 140.6)(C), 10% (772.8 ± 446.3)(ABC), 15% (854.7 ± 297.3)(AB), 20% (863.4 ± 418.0)(A), 30% (459.5 ± 140.5)(BC); UR-groups: 0% (187.7 ± 120.3)(B), 10% (795.4 ± 688.1)(B), 15% (1999.9 ± 1258.6)(A), 20% (1911.5 ± 596.8)(A), and 30% (2090.6 ± 656.7)(A), and for flexural modulus (GPa) FR-groups: 0% (2065.63 ± 882.15)(B), 10% (4479.06 ± 3019.82)(AB), 15% (5694.89 ± 2790.3)(A), 20% (6042.11 ± 3392.13)(A), and 30% (2495.67 ± 1345.86)(B); UR-groups: 0% (1090.08 ± 708.81)(C), 10% (7032.13 ± 7864.53)(BC), 15% (19331.57 ± 16759.12)(AB), 20% (15726.03 ± 8035.09)(AB), and 30% (29364.37 ± 13928.96)(A). Fiber addiction in BisGMA resin increases flexural properties, and the interaction between resin and fibers seems better in the absence of inorganic fillers increasing flexural properties.</p>