People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Javadi, Yashar
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Collaborative robotic wire + arc additive manufacture and sensor-enabled in-process ultrasonic non-destructive evaluationcitations
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2021Feed forward control of welding process parameters through on-line ultrasonic thickness measurementcitations
- 2021Non-contact in-process ultrasonic screening of thin fusion welded jointscitations
- 2020In-process calibration of a non-destructive testing system used for in-process inspection of multi-pass weldingcitations
- 2020Laser-assisted surface adaptive ultrasound (SAUL) inspection of samples with complex surface profiles using a phased array roller-probe
- 2019Ultrasonic phased array inspection of wire + arc additive manufacture samples using conventional and total focusing method imaging approachescitations
- 2019Ultrasonic phased array inspection of wire plus arc additive manufacture samples using conventional and total focusing method imaging approachescitations
- 2019Ultrasonic phased array inspection of a Wire + Arc Additive Manufactured (WAAM) sample with intentionally embedded defectscitations
- 2018Evolution of microstructure and toughness in 2.25Cr-1Mo steel weldscitations
- 2018Laser induced phased arrays for remote ultrasonic imaging of additive manufactured components
- 2018Ultrasonic phased array inspection of wire plus arc additive manufacture (WAAM) samples using conventional and total focusing method (TFM) imaging approaches
- 2017Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stressescitations
- 2017Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91citations
- 2017Measurement of residual stresses induced by sequential weld buttering and cladding operations involving a 2.25Cr-1Mo substrate materialcitations
- 2016Topographic inspection as a method of weld joint diagnosticcitations
- 2016Investigation of mechanical properties in welding of shape memory alloyscitations
- 2016Evaluation of hoop residual stress variations in the thickness of dissimilar welded pipes by using the LCR ultrasonic wavescitations
- 2015Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stressescitations
- 2015Sub-surface stress measurement of cross welds in a dissimilar welded pressure vesselcitations
- 2015Evaluation of welding residual stress in a nickel alloy pressure vessel using the ultrasonic stress measurement technique
- 2014Ultrasonic stress evaluation through thickness of a stainless steel pressure vesselcitations
- 2014Nondestructive evaluation of welding residual stresses in austenitic stainless steel platescitations
- 2013Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thicknesscitations
- 2013Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel platescitations
- 2013Ultrasonic evaluation of welding residual stresses in stainless steel pressure vesselcitations
- 2013Comparison between contact and immersion ultrasonic method to evaluate welding residual stresses of dissimilar jointscitations
- 2013Employing the LCR waves to measure longitudinal residual stresses in different depths of a stainless steel welded platecitations
- 2013Nondestructive evaluation of welding residual stresses in dissimilar welded pipescitations
- 2012Residual stress evaluation in dissimilar welded joints using finite element simulation and the L CR ultrasonic wavecitations
Places of action
Organizations | Location | People |
---|
article
Employing the LCR waves to measure longitudinal residual stresses in different depths of a stainless steel welded plate
Abstract
Ultrasonic stress measurement is based on the acoustoelasticity law which presents the relationship between the stress and acoustic wave velocity in engineering materials. The technique uses longitudinal critically refracted (LCR) waves that travel parallel to the material surface. The LCR wave is a bulk longitudinal wave that propagates within an effective depth underneath the surface while the penetration depth of a L CR wave depends on its frequency. It is possible to measure the residual stress in different depths by employing different frequencies of the LCR waves. This paper evaluates welding residual stresses in different depths of a plate made of austenitic stainless steel (304L). The penetration depths are accurately measured for the LCR waves produced by 1 MHz, 2 MHz, 4 MHz, and 5 MHz transducers. Residual stresses through the thickness of the plate are then evaluated by employing four different series of transducers. It has been concluded that the LCR method is nondestructive, easy and fast, portable, readily available, and low cost and bulk measuring technique which can be accurately employed in through-thickness stress measurement of austenitic stainless steels. © 2013 Yashar Javadi and Sergej Hloch.