Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mukhopadhyay, Sharmila

  • Google
  • 3
  • 15
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2013A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films10citations
  • 2011Synthesis and Characteristics of Nano-Ceria Supported Bimetallic Catalysts For S-Tolerant SOFCscitations
  • 2008Effect of oxygen on growth and properties of diamond thin film deposited at low surface temperature15citations

Places of action

Chart of shared publication
Barnes, Paul N.
1 / 1 shared
Varanasi, Chakrapani V.
1 / 1 shared
Quinton, Betty T.
1 / 1 shared
Yost, Kevin J.
1 / 1 shared
Burke, Jack
1 / 1 shared
Tsao, Bang-Hung
1 / 1 shared
Huang, Hong
1 / 5 shared
Jackson, Allen
1 / 1 shared
Barney, Ian
1 / 1 shared
Marruffo, Alexis
1 / 1 shared
Bozeman, Joe
1 / 1 shared
Barney, I. T.
1 / 1 shared
Singh, Raj N.
1 / 2 shared
Das, D.
1 / 8 shared
Jackson, A. G.
1 / 1 shared
Chart of publication period
2013
2011
2008

Co-Authors (by relevance)

  • Barnes, Paul N.
  • Varanasi, Chakrapani V.
  • Quinton, Betty T.
  • Yost, Kevin J.
  • Burke, Jack
  • Tsao, Bang-Hung
  • Huang, Hong
  • Jackson, Allen
  • Barney, Ian
  • Marruffo, Alexis
  • Bozeman, Joe
  • Barney, I. T.
  • Singh, Raj N.
  • Das, D.
  • Jackson, A. G.
OrganizationsLocationPeople

article

A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

  • Barnes, Paul N.
  • Varanasi, Chakrapani V.
  • Quinton, Betty T.
  • Mukhopadhyay, Sharmila
  • Yost, Kevin J.
  • Burke, Jack
  • Tsao, Bang-Hung
Abstract

<jats:p>This paper compares between the methods of growing carbon nanotubes (CNTs) on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD) techniques for growing CNTs on diamond: thermal CVD (T-CVD), microwave plasma-enhanced CVD (MPE-CVD), and floating catalyst thermal CVD (FCT-CVD). Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi>I</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:msub><mml:mrow><mml:mi>I</mml:mi></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • nanotube
  • strength
  • transmission electron microscopy
  • durability
  • interfacial
  • Raman spectroscopy
  • thermal conductivity
  • chemical vapor deposition