People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vijay, R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Effect of graphitization percentage on fade and recovery performance of copper-free non-asbestos organic brake padscitations
- 2022Effect of alkali treatment on performance characterization of <i>Ziziphus mauritiana fiber</i> and its epoxy compositescitations
- 2022Tribological characterizations of bio-polymer based ecofriendly copper-free brake friction compositescitations
- 2021Influence of premixed dual metal sulfides on the tribological performance of copper-free brake friction materialscitations
- 2020Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applicationscitations
- 2019Influence of iron–aluminum alloy on the tribological performance of non-asbestos brake friction materials – a solution for copper replacementcitations
- 2019Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction compositescitations
- 2015Tribo-Thermal Based Evaluation of Non Asbestos Disc Brake Pad Formulation
- 2013Optimization of Tribological Properties of Nonasbestos Brake Pad Material by Using Steel Woolcitations
Places of action
Organizations | Location | People |
---|
article
Optimization of Tribological Properties of Nonasbestos Brake Pad Material by Using Steel Wool
Abstract
The gradual phasing out of typical brake pad material led to the spark of extensive research in development of alternatives. Henceforth we have performed a tribological study to improve the performance characteristics of the friction product (brake pad) by using steel wool, a metallic material which has an excellent structural reinforcement property and high thermal stability which are indeed required to improve the performance of the brake pad. Under the study, five frictional composites were developed and optimized using the same ingredients in an appropriate proportion except steel wool (0%, 4%, 8%, 12%, and 16%) which is compensated by synthetic barite, and the synthesized compositions are designated as Na01 to Na05. The developed pads are tested for tribological behaviour under conventional environment in a standard pin on disc tribometer. It is observed that increase in steel wool concentration resulted in high coefficient of friction and low wear rate of pad as resulted in Na05 composition. SEM analysis of the wear surface has proved to be useful in understanding the wear behaviour of the composites.