Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Koller, Martin

  • Google
  • 4
  • 27
  • 284

Czech Academy of Sciences, Institute of Thermomechanics

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Scanning Acoustic Microscopy Characterization of Cold-Sprayed Coatings Deposited on Grooved Substrates1citations
  • 2022Cold Spraying Onto Notched Surfaces: Scanning Acoustic Microscopy as a Tool for Evaluation of the Interface Qualitycitations
  • 2013Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products185citations
  • 2013Biodegradable Latexes from Animal-Derived Waste: Biosynthesis and Characterization of mcl-PHA accumulated by Ps. citronellolis98citations

Places of action

Chart of shared publication
Kondas, Jan
1 / 3 shared
Ševčík, Martin
1 / 2 shared
Janovská, Michaela
1 / 1 shared
Singh, Reeti
1 / 2 shared
Cizek, Jan
1 / 5 shared
Seiner, Hanuš
1 / 6 shared
Janovská, M.
1 / 9 shared
Ševčík, M.
1 / 20 shared
Singh, R.
1 / 46 shared
Kondas, J.
1 / 3 shared
Seiner, H.
1 / 47 shared
Cizek, J.
1 / 3 shared
Muhr, Alexander
2 / 2 shared
Fasl, Hubert
1 / 1 shared
Braunegg, Gerhart
1 / 1 shared
Stelzer, Franz
1 / 4 shared
Hermann-Krauss, Carmen
1 / 1 shared
Strohmeier, Katharina
1 / 1 shared
Kowalczuk, Marek
1 / 12 shared
Schober, Sigurd
1 / 1 shared
Mittelbach, Martin
1 / 1 shared
Rechberger, Eva Maria
1 / 1 shared
Adamus, Grazyna
1 / 8 shared
Salerno, Anna
1 / 1 shared
Reiterer, Angelika
1 / 1 shared
Schiller, Margaretha
1 / 1 shared
Kwicien, Michal
1 / 1 shared
Chart of publication period
2024
2022
2013

Co-Authors (by relevance)

  • Kondas, Jan
  • Ševčík, Martin
  • Janovská, Michaela
  • Singh, Reeti
  • Cizek, Jan
  • Seiner, Hanuš
  • Janovská, M.
  • Ševčík, M.
  • Singh, R.
  • Kondas, J.
  • Seiner, H.
  • Cizek, J.
  • Muhr, Alexander
  • Fasl, Hubert
  • Braunegg, Gerhart
  • Stelzer, Franz
  • Hermann-Krauss, Carmen
  • Strohmeier, Katharina
  • Kowalczuk, Marek
  • Schober, Sigurd
  • Mittelbach, Martin
  • Rechberger, Eva Maria
  • Adamus, Grazyna
  • Salerno, Anna
  • Reiterer, Angelika
  • Schiller, Margaretha
  • Kwicien, Michal
OrganizationsLocationPeople

article

Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products

  • Muhr, Alexander
  • Fasl, Hubert
  • Braunegg, Gerhart
  • Stelzer, Franz
  • Hermann-Krauss, Carmen
  • Koller, Martin
Abstract

The archaeon Haloferax mediterranei was selected for production of PHA co- and terpolyesters using inexpensive crude glycerol phase (CGP) from biodiesel production as carbon source. CGP was assessed by comparison with the application of pure glycerol.<br/>Applying pure glycerol, a copolyester with a molar fraction of 3-hydroxybutyrate (3HB) of 0.90 mol/mol and 3-hydroxyvalerate (3HV) of 0.10 mol/mol, was produced at a volumetric productivity of 0.12 g/Lh and an intracellular PHA content of 75.4 wt.-% in the sum of biomass protein plus PHA. Application of CGP resulted in the same polyester composition and volumetric productivity,<br/>indicating the feasibility of applying CGP as feedstock. Analysis of molar mass distribution revealed a weight average molar mass of 150 kDa and polydispersityof 2.1 for pure glycerol and 253 kDa and 2.7 for CGP, respectively; melting temperatures ranged between 130 and 140∘C in both setups. Supplying -butyrolactone as 4-hydroxybutyrate (4HB) precursor resulted in a poly[(R)-<br/>3-hydroxybutyrate-co-(R)-3-hydroxyvalerate-co-4-hydroxybutyrate] (PHBHV4HB) terpolyester containing 3HV (0.12 mol/mol) and 4HB (0.05 mol/mol) in the poly[(R)-3-hydroxybutyrate] (PHB) matrix; in addition, this process runs without sterilization of the bioreactor. The terpolyester displayed reduced melting (melting endotherms at 122 and 137∘C) and glass transition temperature<br/>(2.5∘C), increased molar mass (391 kDa), and a polydispersity similar to the copolyesters.

Topics
  • Carbon
  • phase
  • glass
  • glass
  • glass transition temperature
  • polydispersity
  • melting temperature