People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quevedo-Lopez, M. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Synthesis and Characterization of Pb(ZrᵼE.ᵽ3ᵽ1, TiᵼE.ᵽ2ᵽ5)Oᵽ1-Pb(NbᵼF/ᵽ1, Znᵽ0/ᵽ1)Oᵽ1 Thin Film Cantilevers for Energy Harvesting Applications
Abstract
A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.