Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ky, Vu Hong

  • Google
  • 2
  • 8
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Facile Fabrication of PANI/Fe2.85Ni0.15O4 Nanocomposites and Their Application for the Effective Degradation of Rhodamine B Dye2citations
  • 20122D Simulation of Nd<sub><b>2</b></sub>Fe<sub><b>14</b></sub>B/<b><i>α</i></b>-Fe Nanocomposite Magnets with Random Grain Distributions Generated by a Monte Carlo Procedure3citations

Places of action

Chart of shared publication
Thi, Tran Minh
1 / 2 shared
Manh, Do Hung
1 / 1 shared
Anh, Nguyen Thi Ngoc
1 / 1 shared
Nguyen, Manh Nghia
1 / 1 shared
Thanh, Tran Dang
1 / 1 shared
Hieu, Nguyen Trung
1 / 1 shared
Truong, Nguyen Xuan
1 / 2 shared
Vuong, Nguyen Van
1 / 2 shared
Chart of publication period
2023
2012

Co-Authors (by relevance)

  • Thi, Tran Minh
  • Manh, Do Hung
  • Anh, Nguyen Thi Ngoc
  • Nguyen, Manh Nghia
  • Thanh, Tran Dang
  • Hieu, Nguyen Trung
  • Truong, Nguyen Xuan
  • Vuong, Nguyen Van
OrganizationsLocationPeople

article

2D Simulation of Nd<sub><b>2</b></sub>Fe<sub><b>14</b></sub>B/<b><i>α</i></b>-Fe Nanocomposite Magnets with Random Grain Distributions Generated by a Monte Carlo Procedure

  • Ky, Vu Hong
  • Hieu, Nguyen Trung
  • Truong, Nguyen Xuan
  • Vuong, Nguyen Van
Abstract

<jats:p>The magnetic properties of Nd<jats:sub>2</jats:sub>Fe<jats:sub>14</jats:sub>B/<jats:italic>α</jats:italic>-Fe nanocomposite magnets consisting of two nanostructured hard and soft magnetic grains assemblies were simulated for 2D case with random grain distributions generated by a Monte Carlo procedure. The effect of the soft phase volume fraction on the remanence<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mi>B</mml:mi><mml:mi>r</mml:mi></mml:msub></mml:mrow></mml:math>, coercivity<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>, squareness<jats:italic>γ</jats:italic>, and maximum energy product<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>B</mml:mi><mml:mi>H</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mtext>max</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>has been simulated for the case of Nd<jats:sub>2</jats:sub>Fe<jats:sub>14</jats:sub>B/<jats:italic>α</jats:italic>-Fe nanocomposite magnets. The simulation results showed that, for the best case, the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>B</mml:mi><mml:mi>H</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mtext>max</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>can be gained up only a several tens of percentage of the origin hard magnetic phase, but not about hundred as theoretically predicted value. The main reason of this discrepancy is due to the fact that the microstructure of real nanocomposite magnets with their random feature is deviated from the modeled microstructure required for implementing the exchange coupling interaction between hard and soft magnetic grains. The hard magnetic shell/soft magnetic core nanostructure and the magnetic field assisted melt-spinning technique seem to be prospective for future high-performance nanocomposite magnets.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • grain
  • simulation
  • melt
  • random
  • coercivity
  • spinning