People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Truong, Nguyen Xuan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2013Fabrication and Magnetic Properties of (text{Nd}_2text{Fe}_{14}text{B/Fe}_{65}text{Co}_{35}) Hard Magnetic Ribbons
- 20122D Simulation of Nd<sub><b>2</b></sub>Fe<sub><b>14</b></sub>B/<b><i>α</i></b>-Fe Nanocomposite Magnets with Random Grain Distributions Generated by a Monte Carlo Procedurecitations
Places of action
Organizations | Location | People |
---|
article
2D Simulation of Nd<sub><b>2</b></sub>Fe<sub><b>14</b></sub>B/<b><i>α</i></b>-Fe Nanocomposite Magnets with Random Grain Distributions Generated by a Monte Carlo Procedure
Abstract
<jats:p>The magnetic properties of Nd<jats:sub>2</jats:sub>Fe<jats:sub>14</jats:sub>B/<jats:italic>α</jats:italic>-Fe nanocomposite magnets consisting of two nanostructured hard and soft magnetic grains assemblies were simulated for 2D case with random grain distributions generated by a Monte Carlo procedure. The effect of the soft phase volume fraction on the remanence<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mi>B</mml:mi><mml:mi>r</mml:mi></mml:msub></mml:mrow></mml:math>, coercivity<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>, squareness<jats:italic>γ</jats:italic>, and maximum energy product<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>B</mml:mi><mml:mi>H</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mtext>max</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>has been simulated for the case of Nd<jats:sub>2</jats:sub>Fe<jats:sub>14</jats:sub>B/<jats:italic>α</jats:italic>-Fe nanocomposite magnets. The simulation results showed that, for the best case, the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>B</mml:mi><mml:mi>H</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mtext>max</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math>can be gained up only a several tens of percentage of the origin hard magnetic phase, but not about hundred as theoretically predicted value. The main reason of this discrepancy is due to the fact that the microstructure of real nanocomposite magnets with their random feature is deviated from the modeled microstructure required for implementing the exchange coupling interaction between hard and soft magnetic grains. The hard magnetic shell/soft magnetic core nanostructure and the magnetic field assisted melt-spinning technique seem to be prospective for future high-performance nanocomposite magnets.</jats:p>