People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smith, Peter G. R.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Identifying mechanical vibration modes of a cantilever using spectrally multiplexed Bragg gratings and machine learning
- 2020Four-port integrated waveguide coupler exploiting bi-directional propagation of two single-mode waveguides
- 2018Direct UV written integrated waveguides using 213nm light
- 2017High-birefringence direct-UV-written silica waveguides for heralded single-photon sources at telecom wavelengths
- 2016An integrated optical Bragg grating refractometer for volatile organic compound detectioncitations
- 2016Photonic quantum networks
- 2015Optically integrated fiber: a new platform for harsh environmental sensing
- 2015Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer
- 2014Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometercitations
- 2013Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regimecitations
- 2013Polish-like facet preparation via dicing for silica integrated opticscitations
- 2013Facet machining of silica waveguides with nanoscale roughness without polishing or lapping
- 2010Micromachined multimode interference device in flat-fibercitations
- 2010Integrated optic glass microcantilevers with Bragg grating interrogationcitations
- 2010Fiber and integrated waveguide-based optical sensorscitations
- 2007Line defects and temperature effects in liquid crystal tunable planar Bragg gratingscitations
- 2005Direct UV writing for channel definition on FHD silica-on-silicon
- 2003Direct-UV writing of channel waveguides in a bulk photosensitive tin doped sodium silicate glass
- 2003Integrated optical structures written in a polymer film by UV-induced refractive index modification
- 2000Broadband monolithic acousto-optic tunable filtercitations
Places of action
Organizations | Location | People |
---|
article
Fiber and integrated waveguide-based optical sensors
Abstract
Over the last years, a large part of the activity in applied photonics and especially in fiber or integrated waveguide-based devices has been transferred partially from the photonics telecommunications industry towards the optical sensors research. Further to the necessity due to telecommunications sector turn down, it has been proven that this shift has been welcomed by the development in relevant industrial sectors (pharmaceutical, medical) where new requirements for very accurate control of the manufacturing process are required. This increasing research effort on all-optical sensors’ technology, combined with emerging and demanding applications, has demonstrated a promising technological platform characterized by unique sensitivity, compactness, reliability, electromagnetic immunity, and low cost, promoting them to a preferable solution for real-world applications, from mechanical sensing to chemical/biochemical and pharmaceutical industry. The inherent also capability of photonics technology for the efficient sensing-signal transmission through optical fibers suggests an enhanced functionality from a system’s perspective, by enabling the high-speed interconnection of multiple remote sensing points, either through a single readout and administration unit, or through a distributed network. Furthermore the need for development of large-scale ad hoc sensor networks requires reliable autonomous and controllable sensing nodes and optical sensors exhibit very attractive and unique characteristics to play key role in this area. Emerging technologies combining new design concepts and operational approaches such as microstructured fibers (PCFs), tapered nanofibers, Bragg gratings, and long-period gratings, interferometric devices, as well as Surface Plasmon Resonance (SPR) devices have shown a strong impetus for novel applications. A critical issue which could dramatically enhance the performance of such functional devices is the use of novel polymers and nanostructured materials able to improve the sensitivity and expand also sensors selectivity range.