Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vekas, L.

  • Google
  • 6
  • 32
  • 169

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2015Magnetic microgels for drug targeting applications: Physical–chemical properties and cytotoxicity evaluation26citations
  • 2015Evaluation of electrospun polymer-Fe3O4 nanocomposite mats in malachite green adsorption49citations
  • 2014Fabrication and characterization of superparamagnetic poly(vinyl pyrrolidone)/poly(L-lactide)/Fe3O4 electrospun membranes18citations
  • 2014An innovative synthesis approach toward the preparation of structurally defined multiresponsive polymer (co)networks11citations
  • 2011Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate57citations
  • 2008Photochemistry Aspects of the Laser Pyrolysis Addressing the Preparation of Oxide Semiconductor Photocatalysts8citations

Places of action

Chart of shared publication
Alexiou, C.
1 / 8 shared
Janko, C.
1 / 1 shared
Craciunescu, I.
1 / 1 shared
Haramus, V. M.
1 / 25 shared
Tietze, R.
1 / 1 shared
Turcu, R.
1 / 3 shared
Lyer, S.
1 / 3 shared
Papatryfonos, C. A.
1 / 2 shared
Savva, I.
2 / 6 shared
Krasia-Christoforou, T.
4 / 17 shared
Marinica, O.
4 / 4 shared
Constantinou, D.
1 / 1 shared
Vasile, E.
1 / 5 shared
Demetriou, M.
1 / 5 shared
Achilleos, M.
1 / 3 shared
Athanasopoulos, G. I.
1 / 3 shared
Papaphilippou, P.
1 / 4 shared
Pourgouris, A.
1 / 1 shared
Taculescu, A.
1 / 1 shared
Kuncser, V.
1 / 6 shared
Gavrila, L.
1 / 3 shared
Scarisoreanu, M.
1 / 3 shared
Prodan, G.
1 / 3 shared
Alexandrescu, R.
1 / 5 shared
Dumitrache, F.
1 / 4 shared
Birjega, R.
1 / 5 shared
Popovici, E.
1 / 1 shared
Soare, I.
1 / 4 shared
Ciupina, V.
1 / 1 shared
Fleaca, C.
1 / 4 shared
Morjan, I.
1 / 4 shared
Filoti, G.
1 / 3 shared
Chart of publication period
2015
2014
2011
2008

Co-Authors (by relevance)

  • Alexiou, C.
  • Janko, C.
  • Craciunescu, I.
  • Haramus, V. M.
  • Tietze, R.
  • Turcu, R.
  • Lyer, S.
  • Papatryfonos, C. A.
  • Savva, I.
  • Krasia-Christoforou, T.
  • Marinica, O.
  • Constantinou, D.
  • Vasile, E.
  • Demetriou, M.
  • Achilleos, M.
  • Athanasopoulos, G. I.
  • Papaphilippou, P.
  • Pourgouris, A.
  • Taculescu, A.
  • Kuncser, V.
  • Gavrila, L.
  • Scarisoreanu, M.
  • Prodan, G.
  • Alexandrescu, R.
  • Dumitrache, F.
  • Birjega, R.
  • Popovici, E.
  • Soare, I.
  • Ciupina, V.
  • Fleaca, C.
  • Morjan, I.
  • Filoti, G.
OrganizationsLocationPeople

article

Photochemistry Aspects of the Laser Pyrolysis Addressing the Preparation of Oxide Semiconductor Photocatalysts

  • Kuncser, V.
  • Gavrila, L.
  • Scarisoreanu, M.
  • Prodan, G.
  • Alexandrescu, R.
  • Dumitrache, F.
  • Birjega, R.
  • Vekas, L.
  • Popovici, E.
  • Soare, I.
  • Ciupina, V.
  • Fleaca, C.
  • Morjan, I.
  • Filoti, G.
Abstract

<jats:p>The laser pyrolysis is a powerful and a versatile tool for the gas-phase synthesis of nanoparticles. In this paper, some fundamental and applicative characteristics of this technique are outlined and recent results obtained in the preparation of gamma iron oxide (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>γ</mml:mi><mml:msub><mml:mrow><mml:mtext>-Fe</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>) and titania (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>) semiconductor nanostructures are illustrated. Nanosized iron oxide particles (4 to 9 nm diameter values) have been directly synthesized by the laser-induced pyrolysis of a mixture containing iron pentacarbonyl/air (as oxidizer)/ethylene (as sensitizer). Temperature-dependent Mossbauer spectroscopy shows that mainly maghemite is present in the sample obtained at higher laser power. The use of selected<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>samples for the preparation of water-dispersed magnetic nanofluids is also discussed.<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>nanoparticles comprising a mixture of anatase and rutile phases were synthesized via the laser pyrolysis of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiCl</mml:mtext></mml:mrow><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>- (vapors) based gas-phase mixtures. High precursor concentration of the oxidizer was found to favor the prevalent anatase phase (about 90%) in the titania nanopowders.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • phase
  • semiconductor
  • iron
  • laser pyrolysis