Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bachasson, Damien

  • Google
  • 6
  • 13
  • 213

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Ultrasound shear wave elastography for assessing diaphragm function in mechanically ventilated patients: a breath-by-breath analysis28citations
  • 2019Diaphragm shear modulus reflects transdiaphragmatic pressure Diaphragm shear modulus reflects transdiaphragmatic pressure 1 during isovolumetric inspiratory efforts and ventilation against 2 inspiratory loading 346citations
  • 2019Diaphragm shear modulus reflects transdiaphragmatic pressure Diaphragm shear modulus reflects transdiaphragmatic pressure 1 during isovolumetric inspiratory efforts and ventilation against inspiratory loading46citations
  • 2019Ultrasound shear wave elastography for assessing diaphragm function within the intensive care unit1citations
  • 2019Diaphragm shear modulus reflects transdiaphragmatic pressure during isovolumetric inspiratory efforts and ventilation against inspiratory loading46citations
  • 2019Diaphragm shear modulus reflects transdiaphragmatic pressure during isovolumetric inspiratory efforts and ventilation against inspiratory loading.46citations

Places of action

Chart of shared publication
Fossé, Quentin
1 / 1 shared
Hogrel, Jean-Yves
5 / 5 shared
Poulard, Thomas
2 / 2 shared
Similowski, Thomas
5 / 5 shared
Morawiec, Elise
1 / 1 shared
Dres, Martin
5 / 5 shared
Virolle, Sara
1 / 1 shared
Demoule, Alexandre
1 / 1 shared
Niérat, Marie-Cécile
2 / 2 shared
Gennisson, Jean-Luc
5 / 17 shared
Nierat, Marie-Cecile
3 / 3 shared
Doorduin, Jonne
3 / 3 shared
Fosse, Quentin
1 / 1 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Fossé, Quentin
  • Hogrel, Jean-Yves
  • Poulard, Thomas
  • Similowski, Thomas
  • Morawiec, Elise
  • Dres, Martin
  • Virolle, Sara
  • Demoule, Alexandre
  • Niérat, Marie-Cécile
  • Gennisson, Jean-Luc
  • Nierat, Marie-Cecile
  • Doorduin, Jonne
  • Fosse, Quentin
OrganizationsLocationPeople

article

Diaphragm shear modulus reflects transdiaphragmatic pressure during isovolumetric inspiratory efforts and ventilation against inspiratory loading.

  • Bachasson, Damien
Abstract

The reference method for the assessment of diaphragm function relies on the measurement of transdiaphragmatic pressure (Pdi). Local muscle stiffness measured using ultrafast shear wave elastography (SWE) provides reliable estimates of muscle force in locomotor muscles. This study aimed at investigating whether SWE could be used as a surrogate of Pdi to evaluate diaphragm function. Fifteen healthy volunteers underwent a randomized stepwise inspiratory loading protocol of 0-60% of maximal isovolumetric inspiratory pressure during closed-airways maneuvers and 0-50% during ventilation against an external inspiratory threshold load. During all tasks, Pdi was measured and SWE was used to assess shear modulus of the right hemidiaphragm (SMdi) at the zone of apposition. Pearson correlation coefficients ( r) and repeated-measures correlation coefficients ( R) were computed to determine within-individual and overall relationships between Pdi and SMdi, respectively. During closed-airways maneuvers, mean Pdi correlated to mean SMdi in all participants [ r ranged from 0.77 to 0.96, all P < 0.01; R = 0.82, 95% confidence intervals (0.76, 0.86), P < 0.01]. During ventilation against inspiratory threshold loading, Pdi swing correlated to maximal SMdi in all participants [ r ranged from 0.40 to 0.90, all P < 0.01; R = 0.70, 95% confidence intervals (0.66, 0.73), P < 0.001]. Changes in diaphragm stiffness as assessed by SWE reflect changes in transdiaphragmatic pressure. SWE provides a new opportunity for direct and noninvasive assessment of diaphragm function. NEW & NOTEWORTHY Accurate and specific estimation of diaphragm effort is critical for evaluating and monitoring diaphragm dysfunction. The measurement of transdiaphragmatic pressure requires the use of invasive gastric and esophageal probes. In the present work, we demonstrate that changes in diaphragm stiffness assessed with ultrasound shear wave elastography reflect changes in transdiaphragmatic pressure, therefore offering a new noninvasive method for gauging diaphragm effort.

Topics
  • impedance spectroscopy