People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feldhoff, Armin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Electrospun Ca<sub>3</sub>Co<sub>4−</sub><i><sub>x</sub></i>O<sub>9+</sub><i><sub>δ</sub></i> nanofibers and nanoribbons: Microstructure and thermoelectric propertiescitations
- 2023Laser generation of CeAlO3 nanocrystals with perovskite structurecitations
- 2023Superior Thermoelectric Performance of Textured Ca<sub>3</sub>Co<sub>4−</sub><i><sub>x</sub></i>O<sub>9+</sub><i><sub>δ</sub></i> Ceramic Nanoribbonscitations
- 2023Superior Thermoelectric Performance of Textured Ca3Co4−xO9+δ Ceramic Nanoribbons
- 2023Preparation of Textured Polycrystalline La<sub>2</sub>NiO<sub>4+</sub> <sub>δ</sub> Membranes and Their Oxygen-Transporting Properties
- 2022Cu-Ni-Based Alloys from Nanopowders as Potent Thermoelectric Materials for High-Power Output Applicationscitations
- 2022Electrospun Ca3Co4−xO9+δ nanofibers and nanoribbons: Microstructure and thermoelectric properties
- 2022Experimental application of a laser-based manufacturing process to develop a free customizable, scalable thermoelectric generator demonstrated on a hot shaft
- 2022Tuning the Thermoelectric Performance of CaMnO3-Based Ceramics by Controlled Exsolution and Microstructuring
- 2022Reaction Sintering of Ca3Co4O9 with BiCuSeO Nanosheets for High-Temperature Thermoelectric Compositescitations
- 2021Role of Doping Agent Degree of Sulfonation and Casting Solvent on the Electrical Conductivity and Morphology of {PEDOT}:{SPAES} Thin Filmscitations
- 2021Spatial Extent of Fluorescence Quenching in Mixed Semiconductor–Metal Nanoparticle Gel Networks
- 2021Reaction sintering of Ca3Co4O9 with BiCuSeO nanosheets for high-temperature thermoelectric composites
- 2021Role of doping agent degree of sulfonation and casting solvent on the electrical conductivity and morphology of pedot:Spaes thin films
- 2021Evaluation of Cu-Ni-Based Alloys for Thermoelectric Energy Conversioncitations
- 2021Permeation improvement of LCCF hollow fiber membranes by spinning and sintering optimizationcitations
- 2019A comprehensive study on improved power materials for high-temperature thermoelectric generatorscitations
- 2016Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivitycitations
- 2015In situ electron energy-loss spectroscopy of cobalt and iron valences in a mixed conducting perovskite and the correlation to a phase decomposition at intermediate temperatures
- 2015Influence of different sintering techniques on microstructure and phase composition of oxygen-transporting ceramiccitations
- 2009Spin-state transition of iron in (Ba 0.5 Sr 0.5 )(Fe 0.8 Zn 0.2 )O 3- δ perovskitecitations
Places of action
Organizations | Location | People |
---|
article
Preparation of Textured Polycrystalline La<sub>2</sub>NiO<sub>4+</sub> <sub>δ</sub> Membranes and Their Oxygen-Transporting Properties
Abstract
<jats:p>Due to its high chemical and thermal stability in CO<jats:sub>2</jats:sub> atmosphere and its anisotropic crystal structure, the Ruddlesden-Popper phase La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>has attracted considerable attention in the research field of oxygen-transporting membranes. The anisotropic properties of La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>can be exploited in textured polycrystalline membranes to control the oxygen diffusion through this material. To fabricate textured La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub> membranes, powder mixtures consisting of fine-grained equiaxial La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>matrix particles and large plate-like La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>template particles in different mass ratios were uniaxially pressed and then sintered in air. For this purpose, the anisotropic template particles were synthesized by molten-flux method using NaOH as flux [1]. In the powder mixture, the La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>template particles can be aligned perpendicular or parallel to the pressing direction, depending on the geometry of the pressing tool and the sample preparation. After the sintering process, textured La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>membranes were obtained,<jats:sub> </jats:sub>which was verified by measuring X-ray diffraction patterns and pole figures. Further X-ray diffraction measurements together with the calculation of the Lotgering orientation factor revealed that an increasing content of the template particles in the ceramic materials leads to a stronger texturing. Scanning electron microscopy micrographs show some individual plate-like<jats:italic><jats:sub> </jats:sub></jats:italic>La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub>grains well embedded in the matrix. Homogeneous distribution of lanthanum, nickel and oxygen in the ceramics was confirmed by energy-dispersive X-ray spectroscopy. Finally, the influence of the template particle content in the La<jats:sub>2</jats:sub>NiO<jats:sub>4+<jats:italic>δ</jats:italic></jats:sub> membranes on the oxygen permeation performance is discussed.</jats:p><jats:p> [1] Escobar Cano, G.; Brinkmann, Y.; Zhao, Z.; Kißling, P.A.; Feldhoff, A. Sol–Gel-Process-Based Molten-Flux Synthesis of Plate-like La<jats:sub>2</jats:sub>NiO<jats:sub>4+</jats:sub><jats:italic><jats:sub>δ</jats:sub></jats:italic> Particles. <jats:italic>Crystals</jats:italic><jats:bold>2022</jats:bold>, <jats:italic>12</jats:italic>, 1346. https://doi.org/10.3390/cryst12101346</jats:p>