Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Daniliuc, Constantin G.

  • Google
  • 4
  • 12
  • 36

University of Münster

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Eutectic Mixtures As Highly Concentrated and Molten Electrolytes with Nearly Single-Ion Conducting Behaviorcitations
  • 2023An Interesting Conversion Route of Mononuclear Zinc Complex to Zinc Mixed Carboxylate Coordination Polymercitations
  • 2010Synthesis and Structural Characterization of an Isomorphous Series of Bis(imidazolin-2-imine) Metal Dichlorides Containing the First Row Transition Metals Mn, Fe, Co, Ni , Cu, and Zn36citations
  • 2008Strukturchemie von Kupfer(I)- und Silber(I)-Komplexen mit Triisopropylphosphansulfid-, -selenid- und -tellurid-Liganden ... : Structural Chemistry of Copper(I) and Silver(I) Complexes with Triisopropylphosphane Sulfide, Selenide and Telluride Ligands ...citations

Places of action

Chart of shared publication
Krämer, Susanna
1 / 2 shared
Gruenebaum, Mariano
1 / 1 shared
Wiemhöfer, Hans-Dieter
1 / 2 shared
Winter, Martin
1 / 25 shared
Scăețeanu, Gina Vasile
1 / 1 shared
Olar, Rodica
1 / 4 shared
Badea, Mihaela
1 / 4 shared
Hrib, Cristian G.
1 / 1 shared
Herdtweck, Eberhardt
1 / 1 shared
Jones, Peter G.
1 / 2 shared
Petrovic, Dejan
1 / 1 shared
Tamm, Matthias
1 / 1 shared
Chart of publication period
2023
2010
2008

Co-Authors (by relevance)

  • Krämer, Susanna
  • Gruenebaum, Mariano
  • Wiemhöfer, Hans-Dieter
  • Winter, Martin
  • Scăețeanu, Gina Vasile
  • Olar, Rodica
  • Badea, Mihaela
  • Hrib, Cristian G.
  • Herdtweck, Eberhardt
  • Jones, Peter G.
  • Petrovic, Dejan
  • Tamm, Matthias
OrganizationsLocationPeople

article

Eutectic Mixtures As Highly Concentrated and Molten Electrolytes with Nearly Single-Ion Conducting Behavior

  • Daniliuc, Constantin G.
  • Krämer, Susanna
  • Gruenebaum, Mariano
  • Wiemhöfer, Hans-Dieter
  • Winter, Martin
Abstract

<jats:p>Today's state-of-the-art liquid electrolytes in lithium ion batteries (LIBs) have a high ionic conductivity and good performance regarding their cycle life. (1) However, they pose a safety risk due to their high vapor pressures and low thermal stability. (1) Furthermore, due to the limited electrochemical stability of the solvent, liquid electrolytes are not suitable for the application in high-voltage LIBs. (2) Molten salts, also called ionic liquids (IL), or highly concentrated electrolytes (HCE) have high lithium ion concentrations, where nearly every solvent molecule is coordinated. Due to this, there are strong ion interactions and the formation of ion clusters that lead to an increased lithium ion transference number of &gt;0.5. (3) Therefore, they can represent an alternative in the field of liquid electrolytes. Additionally, HCE exhibit a higher thermal and electrochemical stability compared to dilute electrolytes and can improve the cycle performance in lithium metal batteries. (4, 5)</jats:p><jats:p>McOwen <jats:italic>et</jats:italic><jats:italic>al</jats:italic>. reported the coordination of lithium ions and crystalline structures in HCE of the binary mixtures of ethylene carbonate (EC) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) with molar ratio up to 1:1. (6) Based on the concept of melting point depression as known from thermodynamics, room-temperature molten, highly concentrated electrolytes of a carbonate-based solvent with lithium sulfonyl imides were investigated. Instead of EC, the solvent pinacol carbonate (PIC) without acidic α-hydrogen atoms, but four bulky methyl groups was synthesized and used for eutectic mixtures, as the melting point of PIC is with 187 °C far above room-temperature. The physicochemical properties of these electrolytes are studied with respect to the different influence of lithium bis(fluorosulfonyl)imide and LiTFSI despite their same basic molecule structure. The focus will be on the electrochemical analysis by the means of the ionic conductivity, transference number and the electrochemical stability.</jats:p><jats:p>In comparison to dilute liquid electrolytes the molten electrolytes show extremely high transference numbers, especially for the PIC-LiTFSI mixtures nearly a single-ion conducting behavior (0.9) is observed. This behavior can be explained by the formation of a 2D polymeric network within the HCE electrolyte as determined by crystallographic measurements in the solid state. Combined with the high electrochemical stability, a stable long-term cycling and dendrite suppression in symmetric lithium cells could be shown. Cycling in full cells with high-voltage cathode materials such as LiNi<jats:sub>0.6</jats:sub>Mn<jats:sub>0.2</jats:sub>Co<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> (NMC622) or LiMn<jats:sub>4</jats:sub>O<jats:sub>2</jats:sub> (LMO) against lithium metal anodes is applicable.</jats:p><jats:p><jats:bold>References</jats:bold><jats:list list-type="roman-lower"><jats:list-item><jats:p>K. Xu, Chemical Reviews, 104(10), 4303–4417 (2004).</jats:p></jats:list-item><jats:list-item><jats:p>J. Li, C. Ma, M. Chi, C. Liang and N. J. Dudney, <jats:italic>Advanced Energy Materials, </jats:italic><jats:bold>5</jats:bold>(4) (2015).</jats:p></jats:list-item><jats:list-item><jats:p>K. M. Diederichsen, E. J. McShane and B. D. McCloskey, <jats:italic>ACS ENERGY LETTERS, </jats:italic><jats:bold>2</jats:bold>(11), 2563–2575 (2017).</jats:p></jats:list-item><jats:list-item><jats:p>G. Jiang, F. Li, H. Wang, M. Wu, S. Qi, X. Liu, S. Yang and J. Ma, <jats:italic>Small Struct., </jats:italic><jats:bold>2</jats:bold>(5), 2000122 (2021).</jats:p></jats:list-item><jats:list-item><jats:p>V. Nilsson, A. Kotronia, M. Lacey, K. Edstrom and P. Johansson, <jats:italic>ACS Applied Energy Materials, </jats:italic><jats:bold>3</jats:bold>(1), 200–207 (2020).</jats:p></jats:list-item><jats:list-item><jats:p>D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle and W. A. Henderson, <jats:italic>Energy &amp; Environmental science, </jats:italic><jats:bold>7</jats:bold>(1), 416–426 (2014).</jats:p></jats:list-item></jats:list></jats:p>

Topics
  • impedance spectroscopy
  • cluster
  • Hydrogen
  • Lithium
  • electrochemical characterization method