Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zaengle, John

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Ni-YSZ Electrode Stability in Solid Oxide Electrolysis Cells Operated in 90-98% Steamcitations

Places of action

Chart of shared publication
Marina, Olga A.
1 / 12 shared
Coyle, Christopher
1 / 2 shared
Meinhardt, Kerry
1 / 2 shared
Bao, Jie
1 / 1 shared
Liu, Tian
1 / 2 shared
Le, Long
1 / 3 shared
Seymour, Lorraine
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Marina, Olga A.
  • Coyle, Christopher
  • Meinhardt, Kerry
  • Bao, Jie
  • Liu, Tian
  • Le, Long
  • Seymour, Lorraine
OrganizationsLocationPeople

article

Ni-YSZ Electrode Stability in Solid Oxide Electrolysis Cells Operated in 90-98% Steam

  • Marina, Olga A.
  • Coyle, Christopher
  • Meinhardt, Kerry
  • Bao, Jie
  • Liu, Tian
  • Le, Long
  • Zaengle, John
  • Seymour, Lorraine
Abstract

<jats:p>Ni-YSZ electrode-supported SOECs were tested at 750 and 800<jats:sup>o</jats:sup>C using extremely high steam concentrations, 90, 95, and 98%. The performance was compared to SOECs tested in 50% steam with 50% hydrogen. Multiple cells were tested simultaneously with several repeats, all cells configured into a single furnace for each test to ensure a reasonable side-by-side comparison and results reproducibility. The Ni/YSZ electrodes was reduced by hydrogen in situ at each operating temperature and then 50-98% steam was added. Cells were tested at a fixed current or voltage for 1000-3000 hours. The electrochemical impedance data was periodically collected followed by the DRT analyses to identify any changes in polarization losses in time. Minimal to no changes in cell performance in time was observed when compared cell operation in 90+% steam vs 50% steam. Slightly higher degradation was seen for cells tested at 800<jats:sup>o</jats:sup>C vs those tested at 750<jats:sup>o</jats:sup>C during the initial 500 hours. After the initial break-in period, the degradation rates for all cells in the following &gt;1000 hours remained the same.</jats:p><jats:p>A separate set of tests was performed to characterize break-in period and to understand how the initial Ni thermal aging at different temperatures affects the time to a pseudo steady-state, i.e., if the Ni aging/conditioning could be used to accelerate the initial degradation and shorten break-in. Symmetrical cells with two Ni-YSZ electrodes on each side of 10 micron YSZ electrolyte were also tested.</jats:p><jats:p>The extensive SEM/EDS analyses were performed on all cells to quantify the Ni particle size and describe any microstructural changes. The 2-dimensional SEM images were reconstructed into the 3D microstructures to calculate the triple phase boundary density, species transport paths tortuosity, and particle/pore size distribution.</jats:p>

Topics
  • density
  • microstructure
  • pore
  • phase
  • scanning electron microscopy
  • Hydrogen
  • aging
  • Energy-dispersive X-ray spectroscopy
  • aging
  • phase boundary