Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smith, James

  • Google
  • 7
  • 34
  • 164

University of East Anglia

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Understanding the interplay of Zn vapours and formation of intermetallic compounds during remote laser welding of Zn-coated steel to aluminium in a zero-gap lap joint configuration1citations
  • 2023Mixed Potential Electrochemical Sensors for Natural Gas Leak Detection – Field Testing of Portable Sensor Packagecitations
  • 2022Quantifiable correlation of ToF‐SIMS and XPS data from polymer surfaces with controlled amino acid and peptide content3citations
  • 2020Pulsed laser deposition of single phase n- and p-type Cu2O thin films with low resistivity61citations
  • 2020Pulsed laser deposition of single phase n- and p-type Cu2O thin films with low resistivity61citations
  • 2012Electrochemically controlled release of antischistosomiasis agents from polypyrrole18citations
  • 2011Recent applications of SEM and AFM for assessing topography of metal and related coatings20citations

Places of action

Chart of shared publication
Ceglarek, Darek
1 / 8 shared
Jabar, Sharhid
1 / 3 shared
Franciosa, Pasquale
1 / 13 shared
Baghbani Barenji, Ali
1 / 1 shared
Kotadia, Hirenkumar
1 / 1 shared
Ayarkwa, Kwasi
1 / 1 shared
Agi, Kamil
1 / 3 shared
Garzon, Fernando H.
1 / 5 shared
Ian, Robert
1 / 1 shared
Halley, Sleight
1 / 3 shared
Steven, Rory T.
1 / 1 shared
Shard, Alexander G.
1 / 3 shared
Spencer, Steve J.
1 / 1 shared
Lledos, Marina
1 / 1 shared
Scurr, David J.
1 / 5 shared
Chan, Weng C.
1 / 1 shared
Simoes, Fabio
1 / 2 shared
Zelzer, Mischa
1 / 2 shared
Denning, Chris
1 / 3 shared
Genapathy, Sivaneswary
1 / 1 shared
Alexander, Morgan R.
1 / 10 shared
Canning, Anne
1 / 2 shared
Taylor, Michael
1 / 5 shared
Farhad, Dr. Syed Farid Uddin
1 / 5 shared
Fermín, David J.
1 / 37 shared
Cherns, David
2 / 17 shared
Fox, Neil A.
1 / 14 shared
Farhad, Syed Farid Uddin
1 / 2 shared
Fox, Neil
1 / 3 shared
Fermin, David
1 / 4 shared
Ewen, R.
1 / 4 shared
Campbell, S.
2 / 8 shared
Li, Y.
1 / 95 shared
Larson, C.
1 / 2 shared
Chart of publication period
2024
2023
2022
2020
2012
2011

Co-Authors (by relevance)

  • Ceglarek, Darek
  • Jabar, Sharhid
  • Franciosa, Pasquale
  • Baghbani Barenji, Ali
  • Kotadia, Hirenkumar
  • Ayarkwa, Kwasi
  • Agi, Kamil
  • Garzon, Fernando H.
  • Ian, Robert
  • Halley, Sleight
  • Steven, Rory T.
  • Shard, Alexander G.
  • Spencer, Steve J.
  • Lledos, Marina
  • Scurr, David J.
  • Chan, Weng C.
  • Simoes, Fabio
  • Zelzer, Mischa
  • Denning, Chris
  • Genapathy, Sivaneswary
  • Alexander, Morgan R.
  • Canning, Anne
  • Taylor, Michael
  • Farhad, Dr. Syed Farid Uddin
  • Fermín, David J.
  • Cherns, David
  • Fox, Neil A.
  • Farhad, Syed Farid Uddin
  • Fox, Neil
  • Fermin, David
  • Ewen, R.
  • Campbell, S.
  • Li, Y.
  • Larson, C.
OrganizationsLocationPeople

article

Mixed Potential Electrochemical Sensors for Natural Gas Leak Detection – Field Testing of Portable Sensor Package

  • Agi, Kamil
  • Garzon, Fernando H.
  • Smith, James
  • Ian, Robert
  • Halley, Sleight
Abstract

<jats:p>According to the EPA, methane (CH<jats:sub>4</jats:sub>) emissions from oil and gas infrastructure accounted for 211 million metric tons of CO<jats:sub>2</jats:sub> equivalent in 2020 [1]. Actual emissions may exceed this by a factor of three [2]. Current natural gas leak detection technologies largely consist of optical sensors such as IR spectrometers [3]. Optical sensors have high sensitivity, but the high cost and fragility of these sensors limit practical applications and continuous monitoring in the field. Mixed potential electrochemical sensors (MPES) are low cost, robust, selective and sensitive, making them a viable option for continuous natural gas leak detection [4]. While we have previously reported on the development of these sensors for natural gas detection in the laboratory, it is necessary to evaluate how these sensors perform in relevant environments.</jats:p><jats:p>The MPES device consists of La<jats:sub>0.87</jats:sub>Sr<jats:sub>0.13</jats:sub>CrO<jats:sub>3</jats:sub> (LSC), indium tin oxide (ITO, In<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> 90 wt%, SnO<jats:sub>2</jats:sub> 10 wt%), and Au sensing electrodes with a Pt pseudo-reference electrode, bridged by 3 mol% YSZ solid electrolyte. A low ionic conductivity magnesia stabilized zirconia (MSZ) substrate is used to enhance sensitivity with a demonstrated limit of detection (LOD) of &lt; 40 ppm. The sensor is integrated with an internet of things (IoT) data collection and transmission package developed by SensorComm Technologies.</jats:p><jats:p>Field testing was performed at Colorado State University’s Methane Emission Technology Evaluation Center (METEC). The sensors’ capability of detecting buried pipeline leaks was investigated by varying the leak rate from 7.2 SLPM to 37 SLPM, lateral sensor distance from 0 meters to 3 meters, and vertical distance from 0 meters to 0.28 meters (Figure 1). Machine learning methods were applied to a training dataset collected in the laboratory to quantify the CH4 concentration. These results serve as a first demonstration that a low-cost mixed potential electrochemical sensor system can successfully detect underground pipeline emissions and quantify CH4 concentrations that are in agreement with previously published results [6] collected using more complex and costly methods.</jats:p><jats:p>References:</jats:p><jats:p>[1] O. US EPA, “Estimates of Methane Emissions by Segment in the United States,” Aug. 27, 2018. https://www.epa.gov/natural-gas-star-program/estimates-methane-emissions-segment-united-states (accessed Dec. 08, 2022).</jats:p><jats:p>[2] A. J. Marchese <jats:italic>et al.</jats:italic>, “Methane Emissions from United States Natural Gas Gathering and Processing,” <jats:italic>Environ. Sci. Technol.</jats:italic>, vol. 49, no. 17, pp. 10718–10727, Sep. 2015, doi: 10.1021/acs.est.5b02275.</jats:p><jats:p>[3] T. Aldhafeeri, M.-K. Tran, R. Vrolyk, M. Pope, and M. Fowler, “A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives,” <jats:italic>Inventions</jats:italic>, vol. 5, no. 3, Art. no. 3, Sep. 2020, doi: 10.3390/inventions5030028.</jats:p><jats:p>[4] F. H. Garzon, R. Mukundan, and E. L. Brosha, “Solid-state mixed potential gas sensors: theory, experiments and challenges,” <jats:italic>Solid State Ion.</jats:italic>, vol. 136–137, pp. 633–638, Nov. 2000, doi: 10.1016/S0167-2738(00)00348-9.</jats:p><jats:p>[5] S. Halley, L. Tsui, and F. Garzon, “Combined Mixed Potential Electrochemical Sensors and Artificial Neural Networks for the Quantificationand Identification of Methane in Natural Gas Emissions Monitoring,” <jats:italic>J. Electrochem. Soc.</jats:italic>, vol. 168, no. 9, p. 097506, Sep. 2021, doi: 10.1149/1945-7111/ac2465.</jats:p><jats:p>[6] B. A. Ulrich, M. Mitton, E. Lachenmeyer, A. Hecobian, D. Zimmerle, and K. M. Smits, “Natural Gas Emissions from Underground Pipelines and Implications for Leak Detection,” <jats:italic>Environ. Sci. Technol. Lett.</jats:italic>, vol. 6, no. 7, pp. 401–406, Jul. 2019, doi: 10.1021/acs.estlett.9b00291.</jats:p><jats:p><jats:bold>Figure 1:</jats:bold> Sensor response to various heights above a simulated buried pipeline leak on two successive days of testing (a and b), and estimated CH<jats:sub>4</jats:sub> concentrations from sensor data (c).</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2604fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />

Topics
  • impedance spectroscopy
  • theory
  • experiment
  • tin
  • machine learning
  • Indium
  • liquid-solid chromatography