People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gasteiger, Hubert A.
Technical University of Munich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Catalyst Aggregate Size Effect on the Mass Transport Properties of Non-Noble Metal Catalyst Layers for PEMFC Cathodescitations
- 2022High Power Density Automotive Membrane Electrode Assemblies
- 2021Comparative Evaluation of LMR-NCM and NCA Cathode Active Materials in Multilayer Lithium-Ion Pouch Cells: Part I. Production, Electrode Characterization, and Formationcitations
- 2021Fluorination of Ni‐Rich lithium‐ion battery cathode materials by fluorine gas: chemistry, characterization, and electrochemical performance in full‐cellscitations
- 2020HOR Activity of Pt-TiO 2-Y at Unconventionally High Potentials Explained:The Influence of SMSI on the Electrochemical Behavior of Ptcitations
- 2019Editors' choice—understanding chemical stability issues between different solid electrolytes in all-solid-state batteries
- 2019Slurry-Based Processing of Solid Electrolytes: A Comparative Binder Study
- 2018Slurry-based processing of solid electrolytes: a comparative binder study
- 2018Lithium Bis(2,2,2-trifluoroethyl)phosphate Li[O2P(OCH2CF3)2]: a high voltage additive for LNMO/graphite cellscitations
- 2017Impact of microporous layer pore properties on liquid water transport in PEM fuel cells: carbon black type and perforation
- 2015ALD deposition of core-shell structures onto electrospun carbon webs for PEM fuel cell MEAs
Places of action
Organizations | Location | People |
---|
document
High Power Density Automotive Membrane Electrode Assemblies
Abstract
<jats:p>The European GAIA project focussed on the development of novel ionomer, membrane, reinforcement, catalyst, catalyst support, gas diffusion and microporous layers, and layer constructions for high power density, high current density automotive membrane electrode assemblies (MEAs). Reaching a sufficiently low degradation rate (11-14 µV/h in an automotive drive cycle including operation at 105 °C) consistent with the 6,000 hour lifetime target while also succeeding in achieving the 1.8 W/cm<jats:sup>2</jats:sup> power density at high current density (3 A/cm<jats:sup>2</jats:sup>) target was a major challenge, and the outcomes of GAIA represent an important step forward for fuel cell transport MEA technology. The results are all the more important that they were obtained with MEAs using materials developed and up-scaled in GAIA. By reaching this high-power density without increasing platinum loading, the Pt-specific power density was reduced to 0.25 g Pt/kW. Costs analysis demonstrated that recycling (catalyst and ionomer) has the potential to significantly reduce MEA cost, and that, with this, the cost per kW of the high power density GAIA MEAs approaches the 6 €/kW target. This presentation will outline the main materials development steps, summarise testing protocols and the results of automotive size cell short stack tests.</jats:p><jats:p><jats:italic>Acknowledgement.</jats:italic> This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under grant agreement n°826097. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.</jats:p>