People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Søgaard, Nicolaj Brink
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Towards non-inert synthesis and characterization of Ge1-xSnx nanoparticles
- 2023Isothermal Heteroepitaxy of Ge1-xSnx Structures for Electronic and Photonic Applicationscitations
- 2022(Si)GeSn Isothermal Multilayer Growth for Specific Applications Using GeH<sub>4</sub> and Ge<sub>2</sub>H<sub>6</sub>
Places of action
Organizations | Location | People |
---|
article
(Si)GeSn Isothermal Multilayer Growth for Specific Applications Using GeH<sub>4</sub> and Ge<sub>2</sub>H<sub>6</sub>
Abstract
<jats:p>The experimental demonstration of Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> alloys lasers opened group-IV materials towards high-performance electronic and photonic devices that can be easily integrated with the current Si semiconductor technology. In recent years, GeSn-based optoelectronic devices including light-emitting and detectors, modulators, and CMOS have been proven.</jats:p><jats:p>The major challenges for the Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> epitaxy arise from the low solid solubility of Sn in Ge, the large lattice mismatch, and the reduced thermal stability between Ge and Sn. All these are becoming extremely critical at higher Sn contents. Non-equilibrium conditions offered by molecular beam epitaxy (MBE), chemical vapor deposition (CVD), flash lamp, or laser annealing have been lately investigated. Between them, CVD is to date the preferred growth technique for its current development compatible with the industry offering micron-thick layers with the highest crystal quality.</jats:p><jats:p>While Tin-tetrachloride (SnCl<jats:sub>4</jats:sub>) becomes the standard Sn precursor, for Ge different gasses, like germane (GeH<jats:sub>4</jats:sub>) and digermane (Ge<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub>) are used attempting to archive high Sn incorporation and high material quality. While Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> films with the same high Sn content can be obtained regardless of the used precursor, the advantages and disadvantages of each precursor are discussed in this work. The use of Ge<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub> is accompanied by high growth rates, being favorable in applications where relatively thick films are needed, such as laser structures. On the other hand, with a relatively low growth rate, GeH<jats:sub>4</jats:sub> provides a greater thickness control, achieving clear and sharp interfaces in heterostructures. For this reason, GeH<jats:sub>4</jats:sub> is the appropriate precursor for quantum transport or spintronic.</jats:p><jats:p>The biggest challenge in heterostructure designs is going up and down in Sn content. The growth of a Ge<jats:sub>1-y</jats:sub>Sn<jats:sub>y</jats:sub> on a Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub>, y<x, or SiGeSn layer cannot be performed by increasing the growth temperature. Post-annealing processes lead to strong crystallinity degradation of the already grown layer by strong Sn diffusion or Sn segregation due to the limited thermal stability of Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> alloys.</jats:p><jats:p>In this work, we address simple methodologies to enhance the gradient or step Sn content without changing the process temperature. Controlling only the carrier gas flow while keeping the standard growth parameters constant, high-quality Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> alloys with uniform Sn content up to 15 at.% are obtained. The proposed method acts as guidance to produce Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> heterostructures that can be extended to any CVD reactor, independently of the used precursor, GeH<jats:sub>4 </jats:sub>or<jats:sub> </jats:sub>Ge<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub>. Different devices structures are presented proving the applicability of the isothermal multilayer growth.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1162fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />