Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Søgaard, Nicolaj Brink

  • Google
  • 3
  • 13
  • 11

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Towards non-inert synthesis and characterization of Ge1-xSnx nanoparticlescitations
  • 2023Isothermal Heteroepitaxy of Ge1-xSnx Structures for Electronic and Photonic Applications11citations
  • 2022(Si)GeSn Isothermal Multilayer Growth for Specific Applications Using GeH<sub>4</sub> and Ge<sub>2</sub>H<sub>6</sub>citations

Places of action

Chart of shared publication
Bae, Jin Hee
2 / 3 shared
Capellini, Giovanni
1 / 26 shared
Yamamoto, Yuji
1 / 9 shared
Grützmacher, Detlev
2 / 30 shared
Buca, Dan
2 / 14 shared
Zhao, Qing Tai
1 / 2 shared
Ikonic, Zoran
1 / 6 shared
Tiedemann, Andreas T.
2 / 3 shared
Concepción, Omar
1 / 4 shared
Díaz, Omar Concepción
1 / 1 shared
Krause, Oliver
1 / 1 shared
Zhao, Qing-Tai
1 / 3 shared
Brazda, Thorsten
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Bae, Jin Hee
  • Capellini, Giovanni
  • Yamamoto, Yuji
  • Grützmacher, Detlev
  • Buca, Dan
  • Zhao, Qing Tai
  • Ikonic, Zoran
  • Tiedemann, Andreas T.
  • Concepción, Omar
  • Díaz, Omar Concepción
  • Krause, Oliver
  • Zhao, Qing-Tai
  • Brazda, Thorsten
OrganizationsLocationPeople

article

(Si)GeSn Isothermal Multilayer Growth for Specific Applications Using GeH<sub>4</sub> and Ge<sub>2</sub>H<sub>6</sub>

  • Bae, Jin Hee
  • Søgaard, Nicolaj Brink
  • Díaz, Omar Concepción
  • Krause, Oliver
  • Zhao, Qing-Tai
  • Grützmacher, Detlev
  • Buca, Dan
  • Tiedemann, Andreas T.
  • Brazda, Thorsten
Abstract

<jats:p>The experimental demonstration of Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> alloys lasers opened group-IV materials towards high-performance electronic and photonic devices that can be easily integrated with the current Si semiconductor technology. In recent years, GeSn-based optoelectronic devices including light-emitting and detectors, modulators, and CMOS have been proven.</jats:p><jats:p>The major challenges for the Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> epitaxy arise from the low solid solubility of Sn in Ge, the large lattice mismatch, and the reduced thermal stability between Ge and Sn. All these are becoming extremely critical at higher Sn contents. Non-equilibrium conditions offered by molecular beam epitaxy (MBE), chemical vapor deposition (CVD), flash lamp, or laser annealing have been lately investigated. Between them, CVD is to date the preferred growth technique for its current development compatible with the industry offering micron-thick layers with the highest crystal quality.</jats:p><jats:p>While Tin-tetrachloride (SnCl<jats:sub>4</jats:sub>) becomes the standard Sn precursor, for Ge different gasses, like germane (GeH<jats:sub>4</jats:sub>) and digermane (Ge<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub>) are used attempting to archive high Sn incorporation and high material quality. While Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> films with the same high Sn content can be obtained regardless of the used precursor, the advantages and disadvantages of each precursor are discussed in this work. The use of Ge<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub> is accompanied by high growth rates, being favorable in applications where relatively thick films are needed, such as laser structures. On the other hand, with a relatively low growth rate, GeH<jats:sub>4</jats:sub> provides a greater thickness control, achieving clear and sharp interfaces in heterostructures. For this reason, GeH<jats:sub>4</jats:sub> is the appropriate precursor for quantum transport or spintronic.</jats:p><jats:p>The biggest challenge in heterostructure designs is going up and down in Sn content. The growth of a Ge<jats:sub>1-y</jats:sub>Sn<jats:sub>y</jats:sub> on a Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub>, y&lt;x, or SiGeSn layer cannot be performed by increasing the growth temperature. Post-annealing processes lead to strong crystallinity degradation of the already grown layer by strong Sn diffusion or Sn segregation due to the limited thermal stability of Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> alloys.</jats:p><jats:p>In this work, we address simple methodologies to enhance the gradient or step Sn content without changing the process temperature. Controlling only the carrier gas flow while keeping the standard growth parameters constant, high-quality Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> alloys with uniform Sn content up to 15 at.% are obtained. The proposed method acts as guidance to produce Ge<jats:sub>1-x</jats:sub>Sn<jats:sub>x</jats:sub> heterostructures that can be extended to any CVD reactor, independently of the used precursor, GeH<jats:sub>4 </jats:sub>or<jats:sub> </jats:sub>Ge<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub>. Different devices structures are presented proving the applicability of the isothermal multilayer growth.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1162fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />

Topics
  • impedance spectroscopy
  • semiconductor
  • annealing
  • tin
  • crystallinity
  • chemical vapor deposition