Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Piotr De

  • Google
  • 1
  • 17
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022(Invited) Modelling and Simulation for the Search for New Active Materials for Redox Flow Batteries - Results of the International Project Sonar1citations

Places of action

Chart of shared publication
Baudrin, Emmanuel
1 / 5 shared
Wolf, Amadeus
1 / 1 shared
Wlodarczyk, Jakub
1 / 1 shared
Gerlach, Daniel
1 / 1 shared
Franco, Alejandro A.
1 / 4 shared
Roznyatovskaya, Nataliya
1 / 1 shared
Skyllas-Kazacos, Maria
1 / 1 shared
Fornari, Rocco
1 / 1 shared
Schaerer, Roman
1 / 1 shared
Guan, Xinjie
1 / 1 shared
Maaß, Astrid
1 / 1 shared
Menictas, Chris
1 / 1 shared
Mourouga, Gael
1 / 1 shared
Schumacher, Jürgen
1 / 6 shared
Hamaekers, Jan
1 / 5 shared
Yu, Jia
1 / 1 shared
Nirschl, Hermann
1 / 11 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Baudrin, Emmanuel
  • Wolf, Amadeus
  • Wlodarczyk, Jakub
  • Gerlach, Daniel
  • Franco, Alejandro A.
  • Roznyatovskaya, Nataliya
  • Skyllas-Kazacos, Maria
  • Fornari, Rocco
  • Schaerer, Roman
  • Guan, Xinjie
  • Maaß, Astrid
  • Menictas, Chris
  • Mourouga, Gael
  • Schumacher, Jürgen
  • Hamaekers, Jan
  • Yu, Jia
  • Nirschl, Hermann
OrganizationsLocationPeople

document

(Invited) Modelling and Simulation for the Search for New Active Materials for Redox Flow Batteries - Results of the International Project Sonar

  • Baudrin, Emmanuel
  • Wolf, Amadeus
  • Wlodarczyk, Jakub
  • Gerlach, Daniel
  • Franco, Alejandro A.
  • Roznyatovskaya, Nataliya
  • Skyllas-Kazacos, Maria
  • Silva, Piotr De
  • Fornari, Rocco
  • Schaerer, Roman
  • Guan, Xinjie
  • Maaß, Astrid
  • Menictas, Chris
  • Mourouga, Gael
  • Schumacher, Jürgen
  • Hamaekers, Jan
  • Yu, Jia
  • Nirschl, Hermann
Abstract

<jats:p>Due to the characteristics of flow batteries, this technology is ideally suited for low-cost storage in the range of a few hours and thus for load balancing as stationary storage in grids with high amounts of renewable energy <jats:uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#_ftn1" xlink:type="simple">[1]</jats:uri>. Today, a large number of different active materials for flow batteries are known, although only a few have been commercialised <jats:uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#_ftn2" xlink:type="simple">[2]</jats:uri>. Basically, the energy supply and thus also the required storage should be sustainable, i.e. not cause resource problems and not be harmful to humans and the environment. A potential for a huge range of possibilities is offered by organic active materials, which should be used especially in aqueous solutions. Due to the immense possibilities, classical synthesis and testing is extremely lengthy and costly. An alternative can be model-based high-throughput screening, where by simulating the properties of active materials in the electrolyte and the battery itself, computer-based simulations can be used to conduct the search.</jats:p><jats:p>The SONAR project is an EU-funded project in which 7 different institutions from the EU, Switzerland and Australia are developing a high-throughput screening method capable of finding new active materials for redox flow batteries. The principle is a serial coupling of different size scales, combined with molecule generation and machine learning. The chemical structure of a candidate is generated by a molecule generator and then its atomistic properties, kinetics, side reactions and cell properties are iteratively calculated with exclusion criteria.</jats:p><jats:p>In this talk we will give an overview of 2 years of research in this project in the areas of machine learning for high throughput screening, DFT based quantum mechanics modelling, kinetics Monte Carlo methods for meso-scale, 0D cell modelling, 3D cell modelling, stack modelling and techno-economics.</jats:p><jats:p><jats:uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#_ftnref1" xlink:type="simple">[1]</jats:uri> B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935.</jats:p><jats:p><jats:uri xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#_ftnref2" xlink:type="simple">[2]</jats:uri> J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 2015, 54, 9776–9809.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1954fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />

Topics
  • impedance spectroscopy
  • simulation
  • density functional theory
  • Monte Carlo method
  • machine learning