Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valk, Peeter

  • Google
  • 1
  • 11
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Investigation of Oxygen Reduction on Platinum Nanoparticles Deposited Onto Peat-Derived Carbon Carriercitations

Places of action

Chart of shared publication
Thomberg, Thomas
1 / 2 shared
Teppor, Patrick
1 / 1 shared
Lobjakas, Wiljar
1 / 1 shared
Volobujeva, Olga
1 / 4 shared
Kasuk, Heili
1 / 1 shared
Nerut, Jaak
1 / 1 shared
Mikli, Valdek
1 / 11 shared
Aruväli, Jaan
1 / 5 shared
Adamson, Anu
1 / 3 shared
Koppel, Miriam
1 / 1 shared
Lust, Enn
1 / 8 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Thomberg, Thomas
  • Teppor, Patrick
  • Lobjakas, Wiljar
  • Volobujeva, Olga
  • Kasuk, Heili
  • Nerut, Jaak
  • Mikli, Valdek
  • Aruväli, Jaan
  • Adamson, Anu
  • Koppel, Miriam
  • Lust, Enn
OrganizationsLocationPeople

article

Investigation of Oxygen Reduction on Platinum Nanoparticles Deposited Onto Peat-Derived Carbon Carrier

  • Thomberg, Thomas
  • Teppor, Patrick
  • Valk, Peeter
  • Lobjakas, Wiljar
  • Volobujeva, Olga
  • Kasuk, Heili
  • Nerut, Jaak
  • Mikli, Valdek
  • Aruväli, Jaan
  • Adamson, Anu
  • Koppel, Miriam
  • Lust, Enn
Abstract

<jats:p>Carbon supported platinum catalysts for proton exchange membrane fuel cell (PEMFC) applications have been studied intensively in the scientific community.<jats:sup>1,2</jats:sup> The catalytic activity of the catalyst depends on the characteristics of the carbon support material<jats:sup>3</jats:sup> and on the Pt depositing method<jats:sup>4,5</jats:sup>. The aim of the study was to investigate the oxygen reduction reaction (ORR) on Pt nanoparticles deposited on peat-derived carbon. The Pt nanoparticles were deposited on the carbon support material by three different methods using NaBH<jats:sub>4</jats:sub> (NBH), ethylene glycol (EG) and isopropyl alcohol (IA) as a reducing agent.</jats:p><jats:p>The studied materials were characterized using N<jats:sub>2</jats:sub> sorption, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Structure of the platinum nanocatalyst on carbon support was also studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). For electrochemical characterization, the electrochemically active surface area (ECA) of the materials were measured in a three-electrode system (0,1 M HClO<jats:sub>4</jats:sub>) and in a completed PEMFC. The ORR kinetics of the materials were studied by the rotating disk electrode (RDE) method as well as in a PEMFC configuration.</jats:p><jats:p>As a result, it was found that the higher the ECA of the material, the higher the catalytic activity. The catalytic activity of the synthesized materials increases in order: IA &lt; NBH &lt; EG. ECA of the materials increases in the same order. Also, the special surface area of the materials increases in the same order. The catalytic activities of the synthesized materials were compared to a commercial catalyst material, 60% Pt on HSA Ketjenblack.</jats:p><jats:p><jats:bold>References</jats:bold><jats:list list-type="roman-lower"><jats:list-item><jats:p>O. Z. Sharaf and M. F. Orhan, <jats:italic>Renew. sust. energ. rev.</jats:italic>, <jats:bold>32</jats:bold>, 810–853 (2014).</jats:p></jats:list-item><jats:list-item><jats:p>Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, <jats:italic>Appl. Energ.</jats:italic>, <jats:bold>88</jats:bold>, 981–1007 (2011).</jats:p></jats:list-item><jats:list-item><jats:p>S. Sharma and B. G. Pollet, <jats:italic>J. Power Sources</jats:italic>, <jats:bold>208</jats:bold>, 96–119 (2012).</jats:p></jats:list-item><jats:list-item><jats:p>S. Sepp et al., <jats:italic>Electrochim. Acta</jats:italic>, <jats:bold>203</jats:bold>, 221–229 (2016).</jats:p></jats:list-item><jats:list-item><jats:p>P. Valk et al., <jats:italic>J. Electrochem. Soc.</jats:italic>, <jats:bold>165</jats:bold>, F315–F323 (2018).</jats:p></jats:list-item></jats:list></jats:p><jats:p><jats:bold>Acknowledgements</jats:bold></jats:p><jats:p>The author thanks the European Union Regional Development Fund for the financial support of the project TK141 “Innovative materials and high-tech equipment for energy recovery systems” (2014-2020.4.01.15-0011); the Estonian Research Agency project (personal research support group grant project No. PRG676) and the Estonian Energy Technology Program: SLOKT10209T “. Nanomaterials – research and applications (NAMUR)” project 3.2.0304.12-0397. The author also thanks the private limited company AuVe Tech.</jats:p>

Topics
  • nanoparticle
  • surface
  • Carbon
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • Platinum
  • thermogravimetry
  • Energy-dispersive X-ray spectroscopy
  • alcohol