Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Knöppel, Julius

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Catalyst Dissolution Analysis in PEM Water Electrolyzers during Intermittent Operation2citations

Places of action

Chart of shared publication
Ehelebe, Konrad
1 / 2 shared
Milosevic, Maja
1 / 1 shared
López, Daniel Escalera
1 / 2 shared
Abbas, Dunia
1 / 1 shared
Cherevko, Serhiy
1 / 22 shared
Thiele, Simon
1 / 18 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ehelebe, Konrad
  • Milosevic, Maja
  • López, Daniel Escalera
  • Abbas, Dunia
  • Cherevko, Serhiy
  • Thiele, Simon
OrganizationsLocationPeople

article

Catalyst Dissolution Analysis in PEM Water Electrolyzers during Intermittent Operation

  • Ehelebe, Konrad
  • Milosevic, Maja
  • Knöppel, Julius
  • López, Daniel Escalera
  • Abbas, Dunia
  • Cherevko, Serhiy
  • Thiele, Simon
Abstract

<jats:p>Sustainable development of the global energy sector requires a transition from fossil fuels to renewable energies. Considering the continuously increasing energy demand, effective utilization of intermittent output from the renewable sources will depend on the efficiency of energy storage and utilization processes. Low chemical complexity and high energy density and efficiency make hydrogen produced via proton exchange membrane water electrolysis (PEMWE) a prominent solution for the mentioned challenges.</jats:p><jats:p>Acidic conditions and high potentials at the anode side of PEM water electrolyzers, where the oxygen evolution reaction (OER) takes place, demand for materials with high catalytic activity and corrosion stability. The state-of-the-art platinum and iridium (oxide) catalysts in the cathode and anode catalyst layers (CLs), respectively, demonstrate relatively good activity and stability during steady operation at low and moderate electrical loads. Indeed, it is anticipated that a significant decrease in the noble metal amount may be achieved without sacrificing the cell performance [1]. An intermittent operation of PEMWE, however, represents a considerable risk factor as both CLs may degrade with time. The extent of such degradation, especially at low catalyst loadings and high current densities, alternated with numerous off cycles is still not well understood and hence, difficult to predict and mitigate.</jats:p><jats:p>Recent results from our group indicate a severe discrepancy between OER catalyst dissolution in aqueous model systems (AMS) and membrane electrode assemblies (MEA), with the main reasons being a suggested discrepancy between estimated and real pH in MEA and stabilization occurring over time [2]. In this work, CLs degradation during dynamic electrolyzer operation in a specially designed PEMWE test station was studied via ex-situ inductively coupled mass spectrometry analysis (ICP-MS) and its influence on the cell’s overall performance was analyzed. The S number, a new metric for OER catalyst lifetime estimation [3], was also used to compare catalyst stability properties within the two systems.</jats:p><jats:p><jats:bold>References:</jats:bold><jats:list list-type="roman-lower"><jats:list-item><jats:p>Bernt, A. Siebel, H. Gasteiger, J. Electrochem. Soc. 165 (5), F305-F314 (2018)</jats:p></jats:list-item><jats:list-item><jats:p>Knöppel, M. Möckl, D. Escalera-Lopez, K. Stojanovski, M. Bierling, T. Böhm, S, Thiele, M. Rzepka, S. Cherevko, Nat. Commun. 12, 2231 (2021)</jats:p></jats:list-item><jats:list-item><jats:p>Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, Serhiy Cherevko, Nat. Cat. 1, 508 (2018)</jats:p></jats:list-item></jats:list></jats:p><jats:p><jats:bold>Figure 1. Longterm stability of IrOx in AMS and MEA environment.</jats:bold> a) Loading-normalized total dissolved iridium amount at current densities of 0.2 A mg<jats:sub>Ir</jats:sub><jats:sup>-1</jats:sup> and 2 A mg<jats:sub>Ir</jats:sub><jats:sup>-1</jats:sup> in AMS and MEA respectively; b) S-numbers calculated from the amount of dissolved iridium.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1369fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />

Topics
  • density
  • impedance spectroscopy
  • energy density
  • corrosion
  • Oxygen
  • Platinum
  • Hydrogen
  • additive manufacturing
  • spectrometry
  • Iridium
  • inductively coupled plasma mass spectrometry
  • Accelerator mass spectrometry