People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thiele, Simon
Helmholtz Institute Erlangen-Nürnberg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Fabrication and Characterization of a Magnetic 3D‐printed Microactuatorcitations
- 2024Pyridine-containing polyhydroxyalkylation-based polymers for use in vanadium redox flow batteries
- 2023Isopropanol electro-oxidation on Pt-Ru-Ircitations
- 2023Highly durable spray-coated plate catalyst for the dehydrogenation of perhydro benzyltoluenecitations
- 2022Nafion Composite Membrane Reinforced By Phosphonated Polypentafluorostyrene Nanofibers
- 2022Catalyst Dissolution Analysis in PEM Water Electrolyzers during Intermittent Operationcitations
- 2021Amorphous Carbon Coatings for Total Knee Replacements—Part II: Tribological Behaviorcitations
- 2021Amorphous carbon coatings for total knee replacements—part i: Deposition, cytocompatibility, chemical and mechanical propertiescitations
- 2020Fabrication of a Robust PEM Water Electrolyzer Based on Non‐Noble Metal Cathode Catalyst: [Mo<sub>3</sub>S<sub>13</sub>]<sup>2−</sup> Clusters Anchored to N‐Doped Carbon Nanotubescitations
- 2020Fabrication of a Robust PEM Water Electrolyzer Based on Non‐Noble Metal Cathode Catalyst: [Mo3S13]2− Clusters Anchored to N‐Doped Carbon Nanotubes
- 2020Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfacescitations
- 2020Improved Hydrogen Oxidation Reaction Activity and Stability of Buried Metal-Oxide Electrocatalyst Interfacescitations
- 2020Tomographic reconstruction and analysis of a silver CO2 reduction cathodecitations
- 2020Tailored nanocomposites for 3D printed micro-opticscitations
- 2018A steady-state Monte Carlo study on the effect of structural and operating parameters on liquid water distribution within the microporous layers and the catalyst layers of PEM fuel cellscitations
- 2017A fully spray-coated fuel cell membrane electrode assembly using aquivion ionomer with a graphene oxide/cerium oxide interlayercitations
- 2017Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzerscitations
- 2017High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursorcitations
Places of action
Organizations | Location | People |
---|
article
Catalyst Dissolution Analysis in PEM Water Electrolyzers during Intermittent Operation
Abstract
<jats:p>Sustainable development of the global energy sector requires a transition from fossil fuels to renewable energies. Considering the continuously increasing energy demand, effective utilization of intermittent output from the renewable sources will depend on the efficiency of energy storage and utilization processes. Low chemical complexity and high energy density and efficiency make hydrogen produced via proton exchange membrane water electrolysis (PEMWE) a prominent solution for the mentioned challenges.</jats:p><jats:p>Acidic conditions and high potentials at the anode side of PEM water electrolyzers, where the oxygen evolution reaction (OER) takes place, demand for materials with high catalytic activity and corrosion stability. The state-of-the-art platinum and iridium (oxide) catalysts in the cathode and anode catalyst layers (CLs), respectively, demonstrate relatively good activity and stability during steady operation at low and moderate electrical loads. Indeed, it is anticipated that a significant decrease in the noble metal amount may be achieved without sacrificing the cell performance [1]. An intermittent operation of PEMWE, however, represents a considerable risk factor as both CLs may degrade with time. The extent of such degradation, especially at low catalyst loadings and high current densities, alternated with numerous off cycles is still not well understood and hence, difficult to predict and mitigate.</jats:p><jats:p>Recent results from our group indicate a severe discrepancy between OER catalyst dissolution in aqueous model systems (AMS) and membrane electrode assemblies (MEA), with the main reasons being a suggested discrepancy between estimated and real pH in MEA and stabilization occurring over time [2]. In this work, CLs degradation during dynamic electrolyzer operation in a specially designed PEMWE test station was studied via ex-situ inductively coupled mass spectrometry analysis (ICP-MS) and its influence on the cell’s overall performance was analyzed. The S number, a new metric for OER catalyst lifetime estimation [3], was also used to compare catalyst stability properties within the two systems.</jats:p><jats:p><jats:bold>References:</jats:bold><jats:list list-type="roman-lower"><jats:list-item><jats:p>Bernt, A. Siebel, H. Gasteiger, J. Electrochem. Soc. 165 (5), F305-F314 (2018)</jats:p></jats:list-item><jats:list-item><jats:p>Knöppel, M. Möckl, D. Escalera-Lopez, K. Stojanovski, M. Bierling, T. Böhm, S, Thiele, M. Rzepka, S. Cherevko, Nat. Commun. 12, 2231 (2021)</jats:p></jats:list-item><jats:list-item><jats:p>Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper, Serhiy Cherevko, Nat. Cat. 1, 508 (2018)</jats:p></jats:list-item></jats:list></jats:p><jats:p><jats:bold>Figure 1. Longterm stability of IrOx in AMS and MEA environment.</jats:bold> a) Loading-normalized total dissolved iridium amount at current densities of 0.2 A mg<jats:sub>Ir</jats:sub><jats:sup>-1</jats:sup> and 2 A mg<jats:sub>Ir</jats:sub><jats:sup>-1</jats:sup> in AMS and MEA respectively; b) S-numbers calculated from the amount of dissolved iridium.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1369fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />