Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Popovic, Jelena

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Solid Electrolyte Interphase on Li/Na Anodes in Contact with Liquid Electrolytescitations

Places of action

Chart of shared publication
Nojabaee, Maryam
1 / 5 shared
Lim, Kyungmi
1 / 1 shared
Drvaric-Talijan, Sara
1 / 1 shared
Maier, Joachim
1 / 9 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Nojabaee, Maryam
  • Lim, Kyungmi
  • Drvaric-Talijan, Sara
  • Maier, Joachim
OrganizationsLocationPeople

document

Solid Electrolyte Interphase on Li/Na Anodes in Contact with Liquid Electrolytes

  • Nojabaee, Maryam
  • Popovic, Jelena
  • Lim, Kyungmi
  • Drvaric-Talijan, Sara
  • Maier, Joachim
Abstract

<jats:p>Electrolyte consumption and continuous solid electrolyte interphase (SEI) growth are some of the crucial issues preventing the commercialization of battery systems depending on implementation of Li/Na metal anodes.<jats:sup>1 </jats:sup>In this work, recent study of SEI growth on Li metal in contact with glyme-based liquid/solid electrolyte under galvanostatic and OCV conditions by electrochemical impedance spectroscopy (EIS), ex situ X-ray photoelectron spectroscopy (XPS), and focused ion beam scanning electron microscopy (FIB-SEM) is presented.<jats:sup>2,3</jats:sup> Under OCV conditions, reaction-controlled mechanism is substituted by diffusion-controlled mechanism at longer growth times. Upon galvanostatic cycling, both the SEI thickness and its room temperature ionic conductivity increase. Additionally, the transport properties of SEI are strongly influenced by the type of lithium salt and the concentration used. In the last part, a comparison of SEI growth in Li vs. Na cells in contact with glymes, carbonates, and water-containing electrolytes is given.<jats:sup>4</jats:sup><jats:list list-type="roman-lower"><jats:list-item><jats:p>Zhang, Zuo, Popovic, Lim, Yin, Maier, Guo, Towards better Li metal anodes: Challenges and strategies, Materials Today, 33, 56 (2020)</jats:p></jats:list-item><jats:list-item><jats:p>Nojabaee, Popovic, Maier, Glyme-based liquid-solid electrolytes for lithium metal batteries, J. Mater. Chem. A, 7, 13331 (2019)</jats:p></jats:list-item><jats:list-item><jats:p>Nojabaee, Küster, Starke, Popovic, Maier, Solid electrolyte interphase evolution on lithium metal in contact with glyme-based electrolytes, Small, 16(23), 2000756 (2020)</jats:p></jats:list-item><jats:list-item><jats:p>Lim, Popovic, Maier, in preparation</jats:p></jats:list-item></jats:list></jats:p>

Topics
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • focused ion beam
  • Lithium
  • electrochemical-induced impedance spectroscopy