Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kannan, Arunachala Mada

  • Google
  • 1
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Synthesis of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Li-Ion Conducting Electrolytes By a Rapid Solution-Combustion Method3citations

Places of action

Chart of shared publication
Badami, Pavan P.
1 / 1 shared
Rettenwander, Daniel
1 / 10 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Badami, Pavan P.
  • Rettenwander, Daniel
OrganizationsLocationPeople

document

Synthesis of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Li-Ion Conducting Electrolytes By a Rapid Solution-Combustion Method

  • Badami, Pavan P.
  • Rettenwander, Daniel
  • Kannan, Arunachala Mada
Abstract

<jats:p>Garnet structured Li-ion conductors (Li<jats:sub>7</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>12</jats:sub>, LLZO) have attracted great attention as promising solid electrolytes for all-solid-state batteries, owing to their wide electrochemical window, better thermal stability and high Li-ion conductivity at room temperature [1,2]. Synthesis of cubic phase LLZO using solid state reaction routes requires high reaction temperatures and long reaction time producing unfavorable micron sized particles [3]. In the present study, a rapid and facile synthesis of LLZO in sub-micron size by combustion method using CH<jats:sub>6</jats:sub>N<jats:sub>4</jats:sub>O fuel is demonstrated. The effect of fuel to oxidizer ratio, calcination temperature on phase purity, particle size towards formation of LLZO was systematically was examined and the synthesis conditions were optimized to attain high relative densities and conductivities of the pellets. In particular, Al and Ga stabilized LLZO were synthesized as low as 600 °C for duration of 4 h and the pellets showed high Li <jats:sup>+</jats:sup>conductivity (up to 0.5 mS.cm<jats:sup>-1</jats:sup>) with relative densities (~ 95 %). Furthermore, studies on critical current densities (CCD) measurements of these pellets would be presented compared to conventional solid-state reaction-based pellets. The presented work is expected to provide insight on producing sub-micron sized LLZO particles at lower synthesis temperatures allowing to explore improved performance of composite-polymer electrolytes and producing thin films.</jats:p><jats:p><jats:bold><jats:italic>Keywords</jats:italic></jats:bold>: <jats:italic>garnets, solution combustion synthesis, sintering and critical current densities. </jats:italic></jats:p><jats:p>References</jats:p><jats:p>[1] R. Murugan, V. Thangadurai, and W. Weppner, <jats:italic>Angew. Chemie - Int. Ed.</jats:italic>, <jats:bold>46</jats:bold>, 7778–7781 (2007).</jats:p><jats:p>[2] R. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, and J. L. M. Rupp, <jats:italic>Nat. Energy</jats:italic>, <jats:bold>4</jats:bold>, 475–483 (2019).</jats:p><jats:p>[3] P. Badami, J.M. Weller, A. Wahab, G.J. Redhammer, L. Ladenstein, D. Rettenwander, M. Wilkening, C.K. Chan and A.M. Kannan, <jats:italic>ACS Appl. Mater. Interfaces (Under review).</jats:italic></jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="941fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • thin film
  • composite
  • mass spectrometry
  • combustion
  • sintering