People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rettenwander, Daniel
Norwegian University of Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Fe/Zr binary MOF-based separator for highly efficient polysulfide adsorption and conversion in Li-S batteriescitations
- 2023A Guideline to Mitigate Interfacial Degradation Processes in Solid‐State Batteries Caused by Cross Diffusioncitations
- 2023Deflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationcitations
- 2023Deflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantation ; ENEngelskEnglishDeflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationcitations
- 2023Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteriescitations
- 2022Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li6La3ZrTaO12 Garnet
- 2020The natural critical current density limit for Li7La3Zr2O12 garnets
- 2020Synthesis of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Li-Ion Conducting Electrolytes By a Rapid Solution-Combustion Methodcitations
- 2018Lithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garnet
- 2017Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytescitations
Places of action
Organizations | Location | People |
---|
document
Synthesis of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Li-Ion Conducting Electrolytes By a Rapid Solution-Combustion Method
Abstract
<jats:p>Garnet structured Li-ion conductors (Li<jats:sub>7</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>12</jats:sub>, LLZO) have attracted great attention as promising solid electrolytes for all-solid-state batteries, owing to their wide electrochemical window, better thermal stability and high Li-ion conductivity at room temperature [1,2]. Synthesis of cubic phase LLZO using solid state reaction routes requires high reaction temperatures and long reaction time producing unfavorable micron sized particles [3]. In the present study, a rapid and facile synthesis of LLZO in sub-micron size by combustion method using CH<jats:sub>6</jats:sub>N<jats:sub>4</jats:sub>O fuel is demonstrated. The effect of fuel to oxidizer ratio, calcination temperature on phase purity, particle size towards formation of LLZO was systematically was examined and the synthesis conditions were optimized to attain high relative densities and conductivities of the pellets. In particular, Al and Ga stabilized LLZO were synthesized as low as 600 °C for duration of 4 h and the pellets showed high Li <jats:sup>+</jats:sup>conductivity (up to 0.5 mS.cm<jats:sup>-1</jats:sup>) with relative densities (~ 95 %). Furthermore, studies on critical current densities (CCD) measurements of these pellets would be presented compared to conventional solid-state reaction-based pellets. The presented work is expected to provide insight on producing sub-micron sized LLZO particles at lower synthesis temperatures allowing to explore improved performance of composite-polymer electrolytes and producing thin films.</jats:p><jats:p><jats:bold><jats:italic>Keywords</jats:italic></jats:bold>: <jats:italic>garnets, solution combustion synthesis, sintering and critical current densities. </jats:italic></jats:p><jats:p>References</jats:p><jats:p>[1] R. Murugan, V. Thangadurai, and W. Weppner, <jats:italic>Angew. Chemie - Int. Ed.</jats:italic>, <jats:bold>46</jats:bold>, 7778–7781 (2007).</jats:p><jats:p>[2] R. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, and J. L. M. Rupp, <jats:italic>Nat. Energy</jats:italic>, <jats:bold>4</jats:bold>, 475–483 (2019).</jats:p><jats:p>[3] P. Badami, J.M. Weller, A. Wahab, G.J. Redhammer, L. Ladenstein, D. Rettenwander, M. Wilkening, C.K. Chan and A.M. Kannan, <jats:italic>ACS Appl. Mater. Interfaces (Under review).</jats:italic></jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="941fig1.jpg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />