Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zaghib, Karim

  • Google
  • 10
  • 56
  • 259

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Beyond Organic Electrolytes: An Analysis of Ionic Liquids for Advanced Lithium Rechargeable Batteries2citations
  • 2022Graphene: Chemistry and Applications for Lithium-Ion Batteries39citations
  • 2020Direct observation of lithium metal dendrites with ceramic solid electrolyte67citations
  • 2020Toward an All‐Ceramic Cathode–Electrolyte Interface with Low‐Temperature Pressed NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> Electrolyte29citations
  • 2020Toward an All-Ceramic Cathode-Electrolyte Interface with Low-Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolyte29citations
  • 2020Si and Si@C Nanoparticles for Lithium-Ion Batteries Anodes: Electrode/Electrolyte Interface Evolutioncitations
  • 2020Electrospun Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> Nanofibers to Develop Solid-State Electrolytes for Lithium Metal Batteriescitations
  • 2016Chemically fabricated LiFePO4 thin film electrode for transparent batteries and electrochromic devices11citations
  • 2016Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperature36citations
  • 2016Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications46citations

Places of action

Chart of shared publication
Reddy, Anil Kumar Madikere Raghunatha
1 / 1 shared
Vishweswariah, Karthik
1 / 1 shared
Joy, Roshny
1 / 2 shared
Jaffarali, Jabeen Fatima Manamkeri
1 / 1 shared
Shafeek, Shimna
1 / 1 shared
Raghavan, Prasanth
1 / 2 shared
Thakur, Vijay Kumar
1 / 125 shared
Das, Akhila
1 / 1 shared
Reddy, Mogalahalli Venkatesh Venkatashamy
1 / 1 shared
Balakrishnan, Neethu T. M.
1 / 1 shared
Delaporte, Nicolas
3 / 3 shared
Paolella, Andrea
4 / 8 shared
Guerfi, Abdelbast
7 / 8 shared
Demers, Hendrix
3 / 3 shared
Girard, Gabriel
3 / 5 shared
Lorrmann, Henning
4 / 5 shared
Gauvin, Raynald
1 / 6 shared
Savoie, Sylvio
3 / 4 shared
Golozar, Maryam
1 / 1 shared
Demopoulos, George P.
2 / 4 shared
Zhu, Wen
2 / 2 shared
Rumpel, Matthias
1 / 6 shared
Bertoni, Giovanni
2 / 11 shared
Perea, Alexis
2 / 3 shared
Rumpel, Mathias
1 / 1 shared
Boismain, Florent
1 / 7 shared
Clément, D.
1 / 1 shared
Haon, Cédric
1 / 15 shared
De Vito, Eric
1 / 10 shared
Herlin-Boime, Nathalie
1 / 45 shared
Franger, Sylvain
1 / 11 shared
Demers, H.
1 / 3 shared
Desrues, Antoine
1 / 7 shared
Trudeau, M.
1 / 1 shared
Veillette, René
1 / 1 shared
Alper, John P.
1 / 7 shared
Monaca, Andrea La
1 / 1 shared
Rosei, Federico
1 / 17 shared
Röder, Manuel
2 / 2 shared
Beleke, Alexis B.
2 / 2 shared
Hovington, Pierre
1 / 1 shared
Posset, Uwe
3 / 7 shared
Faure, Cyril
1 / 5 shared
Viñuales, Ana
1 / 3 shared
Dontigny, Martin
1 / 1 shared
Schmitt, Angelika
1 / 1 shared
Cabañero, Germán
1 / 3 shared
Schott, Marco
1 / 2 shared
Palenzuela, Jesús
1 / 1 shared
Grande, Hans
1 / 1 shared
Tena-Zaera, Ramón
1 / 5 shared
Alesanco, Yolanda
1 / 3 shared
Herbig, Bettina
1 / 5 shared
Bünsow, Johanna
1 / 1 shared
Sextl, Gerhard
1 / 12 shared
Guntow, Uwe
1 / 2 shared
Chart of publication period
2024
2022
2020
2016

Co-Authors (by relevance)

  • Reddy, Anil Kumar Madikere Raghunatha
  • Vishweswariah, Karthik
  • Joy, Roshny
  • Jaffarali, Jabeen Fatima Manamkeri
  • Shafeek, Shimna
  • Raghavan, Prasanth
  • Thakur, Vijay Kumar
  • Das, Akhila
  • Reddy, Mogalahalli Venkatesh Venkatashamy
  • Balakrishnan, Neethu T. M.
  • Delaporte, Nicolas
  • Paolella, Andrea
  • Guerfi, Abdelbast
  • Demers, Hendrix
  • Girard, Gabriel
  • Lorrmann, Henning
  • Gauvin, Raynald
  • Savoie, Sylvio
  • Golozar, Maryam
  • Demopoulos, George P.
  • Zhu, Wen
  • Rumpel, Matthias
  • Bertoni, Giovanni
  • Perea, Alexis
  • Rumpel, Mathias
  • Boismain, Florent
  • Clément, D.
  • Haon, Cédric
  • De Vito, Eric
  • Herlin-Boime, Nathalie
  • Franger, Sylvain
  • Demers, H.
  • Desrues, Antoine
  • Trudeau, M.
  • Veillette, René
  • Alper, John P.
  • Monaca, Andrea La
  • Rosei, Federico
  • Röder, Manuel
  • Beleke, Alexis B.
  • Hovington, Pierre
  • Posset, Uwe
  • Faure, Cyril
  • Viñuales, Ana
  • Dontigny, Martin
  • Schmitt, Angelika
  • Cabañero, Germán
  • Schott, Marco
  • Palenzuela, Jesús
  • Grande, Hans
  • Tena-Zaera, Ramón
  • Alesanco, Yolanda
  • Herbig, Bettina
  • Bünsow, Johanna
  • Sextl, Gerhard
  • Guntow, Uwe
OrganizationsLocationPeople

article

Electrospun Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> Nanofibers to Develop Solid-State Electrolytes for Lithium Metal Batteries

  • Zaghib, Karim
  • Paolella, Andrea
  • Monaca, Andrea La
  • Guerfi, Abdelbast
  • Rosei, Federico
Abstract

<jats:p>During the last decades lithium-ion battery (LIB) has progressively become the benchmark for developing novel energy storage systems for portable and automotive applications. Although the energy density of commercial LIBs has increased significantly over time, it is now reaching a physicochemical limit (~800 Wh L<jats:sup>-1</jats:sup>), which arises from current materials technology [1]. Hence, a new paradigm is needed to develop next-generation high-energy batteries. A promising candidate is the all-solid-state lithium battery, which features a solid ion-conductive material acting as both separator and electrolyte and usually referred to as solid-state electrolyte (SSE). When compared to flammable organic-based liquid electrolytes, widely used in commercial LIBs, SSEs are characterized by better electrochemical and thermal stabilities as well as by a higher mechanical strength, all of which are beneficial for the safety of the final device. They also enable the use of lithium metal as anode, which potentially increases the volumetric energy density of the cell by up to 70% [1]. SSEs are usually made of polymeric, ceramic or composite materials and, regardless of the composition, they are characterized by some key issues that undermine the performance of the final device. Specifically, the low ionic conductivity at room temperature and the poor interfacial compatibility with the electrodes are the main challenges the scientific community is addressing. Recently, the use of 1-dimensional structures as nanofiller has been reported as an effective strategy to improve ionic conductivity and mechanical properties of composite polymer electrolytes (CPEs) [2–4]. Inorganic nanowires and nanofibers resulted to be also advantageous for increasing the density and therefore the ionic conductivity of ceramic electrolytes [5,6].</jats:p><jats:p>Herein, we propose the use of ceramic NASICON-like Li<jats:sub>1.3</jats:sub>Al<jats:sub>0.3</jats:sub>Ti<jats:sub>1.7</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LATP) nanofibers to develop SSEs for lithium batteries. LATP is one of the most promising ceramic material for designing an SSE because it has the highest ionic conductivity in the Li-NASICON family (7 · 10<jats:sup>-4</jats:sup> S cm<jats:sup>-1</jats:sup> at 25 °C), it is chemically and thermally stable in atmosphere conditions, and it can be synthesized by using low cost and easily-processable precursors [7]. The synthesis of LATP nanofibers was performed by incorporating an electrospinning step into a conventional sol-gel process [8]. Specifically, a solution containing the precursor materials and a polymer carrier was electrospun to produce a nanofibrous precursor membrane. The achieved membrane was then calcined to synthesize ceramic LATP nanofibers. Purity and morphology of the synthesized material have been investigated by X-ray diffraction and electron microscopy techniques. Finally, LATP nanofibers have been used as ceramic filler to produce a poly(ethylene oxide)-based CPE. Its electrochemical performance are here discussed and compared to those of the equivalent nanoparticle-filled CPE and the plain polymer electrolyte. Preliminary data on a dense ceramic electrolyte achieved by pressing and then calcining the precursor membrane are here reported too.</jats:p><jats:p>[1] J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141</jats:p><jats:p> [2] T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, C.K. Chan, ACS Appl. Mater. Interfaces 9 (2017) 21773–21780.</jats:p><jats:p> [3] W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Nat. Energy 2 (2017) 17035.</jats:p><jats:p> [4] Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.-H. Yang, F. Kang, Y.-B. He, Adv. Funct. Mater. 29 (2019) 1805301.</jats:p><jats:p> [5] T. Yang, Z.D. Gordon, Y. Li, C.K. Chan, J. Phys. Chem. C 119 (2015) 14947–14953.</jats:p><jats:p> [6] T. Yang, Y. Li, C.K. Chan, J. Power Sources 287 (2015) 164–169.</jats:p><jats:p> [7] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka G. Adachi, J. Electrochem. Soc. 137 (1990) 1023–1027.</jats:p><jats:p> [8] A. La Monaca, A. Paolella, A. Guerfi, F. Rosei, K. Zaghib, Electrochem. Commun. 104 (2019) 106483.</jats:p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • polymer
  • energy density
  • x-ray diffraction
  • strength
  • composite
  • Lithium
  • electron microscopy
  • ceramic
  • interfacial
  • electrospinning
  • cloud-point extraction