Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jensen, Jens Oluf

  • Google
  • 25
  • 63
  • 1072

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (25/25 displayed)

  • 2022Activity of carbon-encapsulated Ni 12− x Fe x P 5 catalysts for the oxygen evolution reaction:Combination of high activity and stability2citations
  • 2022Activity of carbon-encapsulated Ni12−xFexP5 catalysts for the oxygen evolution reaction2citations
  • 2020Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis72citations
  • 2020(Invited) Advanced Alkaline Electrolysis Cells for the Production of Sustainable Fuels and Chemicalscitations
  • 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress150citations
  • 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress150citations
  • 2020Process for producing metal alloy nanoparticlescitations
  • 2018Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters69citations
  • 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes15citations
  • 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes15citations
  • 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations118citations
  • 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations118citations
  • 2015Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes39citations
  • 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid27citations
  • 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid27citations
  • 2014Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cellscitations
  • 2014Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells57citations
  • 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperaturescitations
  • 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperaturescitations
  • 2013Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes39citations
  • 2012Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolytecitations
  • 2011New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperaturescitations
  • 2011Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells95citations
  • 2009Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank77citations
  • 2004An in-situ neutron diffraction study of the ageing of CaNi5Dx at 80ºC and 9 bar.citations

Places of action

Chart of shared publication
Sunde, Svein
2 / 8 shared
Poureshghi, Fatemeh
2 / 2 shared
Seland, Frode
2 / 6 shared
Chatzichristodoulou, Christodoulos
2 / 37 shared
Aili, David
9 / 16 shared
Kraglund, Mikkel Rykær
4 / 6 shared
Tavacoli, Joe
1 / 2 shared
Frandsen, Henrik Lund
1 / 66 shared
Gadea, Christophe
1 / 5 shared
Kiebach, Ragnar
1 / 13 shared
Pitscheider, Simon
1 / 3 shared
Seselj, Nedjeljko
1 / 3 shared
Mogensen, Mogens Bjerg
1 / 111 shared
Georgolamprou, Xanthi
1 / 3 shared
Gellrich, Florian
1 / 1 shared
Khajavi, Peyman
1 / 11 shared
Henkensmeier, Dirk
2 / 5 shared
Li, Qingfeng
17 / 28 shared
Fernandez, Santiago Martin
2 / 2 shared
Cleemann, Lars Nilausen
4 / 9 shared
Singh, Bhupendra
2 / 2 shared
Hu, Yang
3 / 10 shared
Martin Fernandez, Santiago
1 / 1 shared
Cleeman, Lars Nilausen
1 / 1 shared
Brandes, Benedikt Axel
1 / 2 shared
Seerup, Larisa
1 / 1 shared
Becker, Hans
1 / 1 shared
Steenberg, Thomas
2 / 6 shared
Hjuler, Hans Aage
2 / 5 shared
Søndergaard, Tonny
1 / 1 shared
Han, Junyoung
2 / 2 shared
Jankova, Katja Jankova
2 / 10 shared
Bjerrum, Niels Janniksen
8 / 25 shared
Hvilsted, Søren
2 / 82 shared
Pan, Chao
3 / 5 shared
Javakhishvili, Irakli
2 / 11 shared
Jankova Atanasova, Katja
2 / 24 shared
Bjerrum, Niels J.
3 / 5 shared
Christensen, Erik
4 / 20 shared
García, Antonio Luis Tomás
2 / 3 shared
Tomás García, Antonio Luis
2 / 3 shared
Hansen, Martin Kalmar
1 / 2 shared
Hartmann-Thompson, Claire
1 / 1 shared
Allward, Todd
1 / 1 shared
Stark, Edmund J.
1 / 1 shared
Alfaro, Silvia Martinez
1 / 1 shared
Buazar, F.
1 / 1 shared
Steenberg, T.
1 / 1 shared
Dai, S.
1 / 3 shared
Nikiforov, Aleksey
2 / 10 shared
Petrushina, Irina
2 / 18 shared
Liao, J. H.
1 / 1 shared
Kerres, J.
1 / 1 shared
Xing, W.
1 / 2 shared
Chromik, A.
1 / 1 shared
Rudbeck, H. C.
1 / 1 shared
Hahn, H.
1 / 26 shared
Fichtner, M.
1 / 14 shared
Wall, C.
1 / 2 shared
Pfeifer, P.
1 / 10 shared
Pitt, M. P.
1 / 1 shared
Hauback., B. C.
1 / 1 shared
Brinks, H. W.
1 / 1 shared
Chart of publication period
2022
2020
2018
2016
2015
2014
2013
2012
2011
2009
2004

Co-Authors (by relevance)

  • Sunde, Svein
  • Poureshghi, Fatemeh
  • Seland, Frode
  • Chatzichristodoulou, Christodoulos
  • Aili, David
  • Kraglund, Mikkel Rykær
  • Tavacoli, Joe
  • Frandsen, Henrik Lund
  • Gadea, Christophe
  • Kiebach, Ragnar
  • Pitscheider, Simon
  • Seselj, Nedjeljko
  • Mogensen, Mogens Bjerg
  • Georgolamprou, Xanthi
  • Gellrich, Florian
  • Khajavi, Peyman
  • Henkensmeier, Dirk
  • Li, Qingfeng
  • Fernandez, Santiago Martin
  • Cleemann, Lars Nilausen
  • Singh, Bhupendra
  • Hu, Yang
  • Martin Fernandez, Santiago
  • Cleeman, Lars Nilausen
  • Brandes, Benedikt Axel
  • Seerup, Larisa
  • Becker, Hans
  • Steenberg, Thomas
  • Hjuler, Hans Aage
  • Søndergaard, Tonny
  • Han, Junyoung
  • Jankova, Katja Jankova
  • Bjerrum, Niels Janniksen
  • Hvilsted, Søren
  • Pan, Chao
  • Javakhishvili, Irakli
  • Jankova Atanasova, Katja
  • Bjerrum, Niels J.
  • Christensen, Erik
  • García, Antonio Luis Tomás
  • Tomás García, Antonio Luis
  • Hansen, Martin Kalmar
  • Hartmann-Thompson, Claire
  • Allward, Todd
  • Stark, Edmund J.
  • Alfaro, Silvia Martinez
  • Buazar, F.
  • Steenberg, T.
  • Dai, S.
  • Nikiforov, Aleksey
  • Petrushina, Irina
  • Liao, J. H.
  • Kerres, J.
  • Xing, W.
  • Chromik, A.
  • Rudbeck, H. C.
  • Hahn, H.
  • Fichtner, M.
  • Wall, C.
  • Pfeifer, P.
  • Pitt, M. P.
  • Hauback., B. C.
  • Brinks, H. W.
OrganizationsLocationPeople

article

(Invited) Advanced Alkaline Electrolysis Cells for the Production of Sustainable Fuels and Chemicals

  • Chatzichristodoulou, Christodoulos
  • Frandsen, Henrik Lund
  • Gadea, Christophe
  • Kiebach, Ragnar
  • Pitscheider, Simon
  • Seselj, Nedjeljko
  • Mogensen, Mogens Bjerg
  • Kraglund, Mikkel Rykær
  • Georgolamprou, Xanthi
  • Gellrich, Florian
  • Jensen, Jens Oluf
  • Khajavi, Peyman
Abstract

<jats:p>Amongst the different electrolysis technologies, alkaline electrolysis (AE) stands out as the most well established for large-scale electrolytic hydrogen production, with commercially available multi-MW units combined in plants of 100s of MW and operated for decades. Besides proven reliability and availability, a key advantage of AE over alternative technologies when it comes to large-scale deployment is the relatively abundant and inexpensive materials it relies on. Nevertheless, AE suffers from relatively poor performance in terms of production rate and efficiency when compared to proton exchange membrane electrolysis (PEME) and solid oxide electrolysis (SOE).</jats:p><jats:p>One of the main reasons is associated with the sluggish hydrogen evolution reaction (HER) kinetics in alkaline environment [1]. Recent improvements in HER catalysts, have reduced the HER kinetics difference between alkaline and acidic environment. Furthermore, the far lower price of these catalysts (e.g. Ni, Ni<jats:sub>1-x</jats:sub>Mo<jats:sub>x</jats:sub>) compared to Pt, allow for much higher catalyst loadings, which can circumvent this challenge in conjunction with the much higher ionic conductivity of concentrated aqueous KOH as compared to PEME and SOE electrolytes. Taking full advantage of this opportunity requires a careful optimization of the AE electrode microstructure to achieve both a high electrochemically active surface area in close proximity to the separator as well as macro-porosity to enable gas evolution with minimal blocking of the active area. This was attempted here by applying high surface area catalytic coatings of Ni and Ni<jats:sub>1-x</jats:sub>Mo<jats:sub>x</jats:sub> on porous conducting supports with varying macro-pore structure. Furthermore, a finite element multi-physics simulation model was employed to provide further insight and guidance to the microstructural optimization effort.</jats:p><jats:p>Raising the operating temperature offers an additional means to drastically improve performance, as both ionic transport and reaction kinetics are strongly activated with temperature [2]. The development of a corrosion resistant ceramic separator [3] has enabled a novel concept of alkaline electrolysis cells operating at 200-250 °C and 20-50 bar [4,5], showing pronounced thermal activation, and achieving a current density of up to 3.75 A cm<jats:sup>-2</jats:sup> at a cell voltage of 1.75 V at 200 °C and 20 bar [6]. The feasibility and promise of this concept, as well as the challenges that lie ahead are also discussed.</jats:p><jats:p>[1] V. R. Stamenkovic, D. Strmcnik, P. P. Lopes and N. M. Markovic, <jats:italic>Nature Materials</jats:italic>, 2017, <jats:bold>16</jats:bold>, 57–69.</jats:p><jats:p>[2] M. H. Miles, G. Kissel, P. W. T. Lu and S. J. Srinivasan, <jats:italic>J. Electrochem. Soc.</jats:italic>, 1976, <jats:bold>123</jats:bold>, 332-336.</jats:p><jats:p>[3] F. Allebrod, C. Chatzichristodoulou, P. L. Mollerup and M. B. Mogensen, <jats:italic>Int. J. Hydrogen Energy</jats:italic>, 2012, <jats:bold>37</jats:bold>, 16505-16514.</jats:p><jats:p>[4] F. Allebrod, C. Chatzichristodoulou and M. B. Mogensen, <jats:italic>J. Power Sources</jats:italic>, 2013, <jats:bold>229</jats:bold>, 22–31.</jats:p><jats:p>[5] F. Allebrod, C. Chatzichristodoulou and M. B. Mogensen, <jats:italic>J. Power Sources</jats:italic>, 2014, <jats:bold>255</jats:bold>, 394-403.</jats:p><jats:p>[6] C. Chatzichristodoulou, F. Allebrod and M. B. Mogensen, <jats:italic>J. Electrochem. Soc.</jats:italic>, 2016, <jats:bold>163</jats:bold>, F3036-F3040.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • pore
  • surface
  • corrosion
  • simulation
  • Hydrogen
  • activation
  • current density
  • porosity
  • ceramic