People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Singh, Kalpana
University of Oslo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodescitations
- 2020Studies on effect of Ca-doping on structure and electrochemical properties of garnet-type Y 3-x Ca x Fe 5 O 12-δcitations
- 2020Investigating the effect of Cu-doping on the electrochemical properties of perovskite-type Ba 0.5 Sr 0.5 Fe 1-x Cu x O 3-δ (0 ≤ x ≤ 0.20) cathodescitations
- 2019Perspective of perovskite-type oxides for proton conducting solid oxide fuel cellscitations
- 2019Electrical Properties of Hollandite-Type Ba1.33Ga2.67Ti5.33O16, K1.33Ga1.33Ti6.67O16, and K1.54Mg0.77Ti7.23O16citations
- 2019Investigating Phase and Electrical Properties of Calcium-Doped Yttrium Iron Garnet
- 2018High performance tubular solid oxide fuel cell based on Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ proton conducting electrolytecitations
- 2018Amine-Functionalized Al-MOF#at y x Sm 2 O 3 ZnO:A Visible Light-Driven Nanocomposite with Excellent Photocatalytic Activity for the Photo-Degradation of Amoxicillincitations
- 2016Grain Boundary Space Charge Effect and Proton Dynamics in Chemically Stable Perovskite-Type Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ (BSCZGY):A Case Study on Effect of Sintering Temperaturecitations
- 2016(Invited) Multi-Element-Doped Ceria-Based Metal Oxides for Advanced Proton Conducting SOFCs
- 2016Electrochemical studies of Gd 0.5 Pr 0.5 BaCo 2 O 5 + δ (GPBC) cathode for oxide ion and proton conducting solid oxide fuel cellscitations
- 2016Synthesis and characterisation of ceramic proton conducting perovskite-type multi-element-doped Ba 0.5 Sr 0.5 Ce 1−x−y−z Zr x Gd y Y z O 3−δ (0 < x < 0.5; y = 0, 0.1, 0.15; z = 0.1, 0.2)citations
- 2014Chemical reactivity between Ce 0.7 RE 0.2 Mo 0.1 O 2 (RE = Y, Sm) and 8YSZ, and conductivity studies of their solid solutionscitations
- 2013Amphoteric oxide semiconductors for energy conversion devices:A tutorial reviewcitations
Places of action
Organizations | Location | People |
---|
article
Investigating Phase and Electrical Properties of Calcium-Doped Yttrium Iron Garnet
Abstract
<jats:p>Literature studies have shown that Ca<jats:sub>0.5</jats:sub>Y<jats:sub>2.5</jats:sub>Fe<jats:sub>5</jats:sub>O<jats:sub>12-δ</jats:sub> can be a promising cathode material for intermediate temperature solid oxide fuel cell (IT-SOFC) <jats:sup>1</jats:sup>. As it exhibits higher electrical and ionic conductivity compared to several other kinds of rare-earth garnets <jats:sup>2</jats:sup>. However, given the high resistivity (> 10<jats:sup>12</jats:sup> Ω cm at room temperature) and less-explored oxide ion conductivity of its parent phase yttrium iron garnet (Y<jats:sub>3</jats:sub>Fe<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub>, YIG), the effect of calcium doping on the electronic and ionic properties has not been fully studied yet <jats:sup>3</jats:sup>. In this work, polycrystalline samples of Ca-doped YIG, with general chemical formula Ca<jats:sub>x</jats:sub>Y<jats:sub>3-x</jats:sub>Fe<jats:sub>5</jats:sub>O<jats:sub>12-δ</jats:sub> (x=0, 0.1, 0.3, 0.5 and 0.7), were prepared and phase characterized by powder X-ray diffractometer. The oxygen non-stoichiometry was determined by iodometric titration at room temperature and thermogravimetric analysis (TG) at elevated temperatures. Total electrical conductivity was measured by four-probe DC method, and ionic conductivity was calculated by using a modified Hebb-Wagner polarization method. As a result, the ionic transference number was calculated and discussed in relation to its potential applications. </jats:p><jats:p>Reference: <jats:list list-type="simple"><jats:list-item><jats:p>Zhong, W., Ling, Y., Rao, Y., Peng, R. & Lu, Y. Calcium doped Y<jats:sub>3</jats:sub>Fe<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub> as a new cathode material for intermediate temperature solid oxide fuel cells. <jats:italic>J. Power Sources</jats:italic><jats:bold>213,</jats:bold> 140–144 (2012).</jats:p></jats:list-item><jats:list-item><jats:p>Kharton, V. V. <jats:italic>et al.</jats:italic> Ionic Transport in Gd<jats:sub>3</jats:sub>Fe<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub>- and Y<jats:sub>3</jats:sub>Fe<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub>-Based Garnets. <jats:italic>J. Electrochem. Soc.</jats:italic><jats:bold>150,</jats:bold> J33 (2003).</jats:p></jats:list-item><jats:list-item><jats:p>Lehmann-Szweykowska, A., Wojciechowski, R. J., Gehring, G. A. & Tobijaszewski, I. Quasiparticles in Calcium Doped Yttrium-Iron Garnets. <jats:italic>Acta Phys. Pol. A</jats:italic><jats:bold>91,</jats:bold> 423–426 (1997).</jats:p></jats:list-item></jats:list></jats:p>