Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bockowski, Michal

  • Google
  • 22
  • 83
  • 263

Institute of High Pressure Physics

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modellingcitations
  • 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modellingcitations
  • 2024History matters for glass structure and mechanical propertiescitations
  • 2023Evolution of the Growth Mode and Its Consequences during Bulk Crystallization of GaN4citations
  • 2022Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteries4citations
  • 2022Thermal conduction in a densified oxide glass3citations
  • 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamics3citations
  • 2021Vibrational disorder and densification-induced homogenization of local elasticity in silicate glasses8citations
  • 2021Thermal conductivity of densified borosilicate glasses14citations
  • 2021Indentation Response of Calcium Aluminoborosilicate Glasses Subjected to Humid Aging and Hot Compression3citations
  • 2021Volume relaxation in a borosilicate glass hot compressed by three different methods4citations
  • 2020Composition and pressure effects on the structure, elastic properties and hardness of aluminoborosilicate glass41citations
  • 2020Achieving ultrahigh crack resistance in glass through humid aging14citations
  • 2020Volume relaxation in a borosilicate glass hot compressed by three different methods4citations
  • 2019Luminescence behaviour of Eu 3+ in hot-compressed silicate glasses7citations
  • 2019Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glasses34citations
  • 2019(Invited) Advances in Ion Implantation of GaN and AlNcitations
  • 2018Deformation and cracking behavior of La2O3-doped oxide glasses with high Poisson's ratio10citations
  • 2017Thermal Conductivity of Foam Glasses Prepared using High Pressure Sinteringcitations
  • 2017Foaming Glass Using High Pressure Sinteringcitations
  • 2016Structure and mechanical properties of compressed sodium aluminosilicate glasses110citations
  • 2014Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glasscitations

Places of action

Chart of shared publication
Micoulaut, Matthieu
2 / 6 shared
Shi, Ying
2 / 3 shared
Jensen, Kirsten M. Ø.
1 / 19 shared
Smedskjær, Morten Mattrup
16 / 111 shared
Neuefeind, Jörg
2 / 5 shared
Ge, Xuan
2 / 2 shared
Juelsholt, Mikkel
2 / 10 shared
Sørensen, Søren Strandskov
6 / 18 shared
Jensen, Lars Rosgaard
5 / 37 shared
Kirsten, M. Ø. Jensen
1 / 1 shared
Yue, Yuanzheng
5 / 86 shared
Jalaludeen, Mohamed Faizal Ussama
1 / 1 shared
Sochacki, Tomasz
1 / 1 shared
Zajac, Magdalena A.
1 / 1 shared
Weyher, Jan L.
1 / 1 shared
Grabianska, Karolina
1 / 1 shared
Kirste, Lutz
1 / 46 shared
Iwinska, Malgorzata
1 / 1 shared
Kucharski, Robert
1 / 1 shared
Rzoska, Sylwester
1 / 3 shared
Starzonek, Szymon
1 / 2 shared
Szpakiewicz-Szatan, Aleksander
1 / 1 shared
Pietrzak, Tomasz K.
1 / 4 shared
Garbarczyk, Jerzy
1 / 29 shared
Cielecki, Pawel Piotr
2 / 3 shared
Skovsen, Esben
2 / 2 shared
Johra, Hicham
3 / 12 shared
Calahoo, Courtney
1 / 5 shared
Schirmacher, Walter
1 / 3 shared
Pan, Zhiwen
1 / 4 shared
Wondraczek, Lothar
2 / 48 shared
Benzine, Omar
1 / 3 shared
Bødker, Mikkel Sandfeld
1 / 13 shared
Mauro, John C.
4 / 47 shared
Logunov, Stephan L.
1 / 1 shared
Youngman, Randall E.
5 / 28 shared
Rzoska, Sylwester J.
7 / 10 shared
Ren, Xiangting
1 / 3 shared
Liu, Pengfei
2 / 6 shared
Lucznik, Boleslaw
1 / 1 shared
Wang, Qingwei
2 / 2 shared
Ziebarth, Benedikt
2 / 3 shared
Ding, Linfeng
2 / 3 shared
Doss, Karan
2 / 2 shared
Lee, Kuo-Hao
2 / 2 shared
Thieme, Manuel
2 / 3 shared
Yang, Yongjian
2 / 3 shared
Demouchy, Sylvie
2 / 10 shared
Gross, Timothy M.
1 / 1 shared
Jaccani, Siva Priya
1 / 1 shared
Huang, Liping
2 / 11 shared
Wu, Jingshi
1 / 1 shared
Stebbins, Jonathan F.
1 / 5 shared
Bista, Saurav
1 / 2 shared
Smedskjaer, Morten, M.
1 / 1 shared
Mauro, John, C.
1 / 1 shared
Kapoor, Saurabh
1 / 4 shared
Cherbib, Mohamed Atef
1 / 2 shared
Hansen, Søren Ravn
1 / 2 shared
Østergaard, Martin Bonderup
3 / 19 shared
Januchta, Kacper
2 / 9 shared
To, Theany
1 / 13 shared
Bauchy, Mathieu
1 / 36 shared
Kirste, Ronny
1 / 5 shared
Guo, Qiang
1 / 2 shared
Breckenridge, M. Hayden
1 / 2 shared
Klump, Andrew
1 / 2 shared
Washiyama, Shun
1 / 1 shared
Mecouch, Will
1 / 1 shared
Sitar, Zlatko
1 / 5 shared
Kim, Ji
1 / 1 shared
Tweedie, James
1 / 2 shared
Reddy, Pramod
1 / 2 shared
Collazo, Ramon
1 / 1 shared
Guan, Yan
1 / 1 shared
Mita, Seiji
1 / 3 shared
Sun, Ruofu
1 / 1 shared
König, Jakob
2 / 13 shared
Petersen, Rasmus Rosenlund
2 / 17 shared
Bechgaard, Tobias Kjær
1 / 3 shared
Goel, Ashutosh
1 / 7 shared
Svenson, Mouritz Nolsøe
1 / 3 shared
Thirion, Lynn M.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017
2016
2014

Co-Authors (by relevance)

  • Micoulaut, Matthieu
  • Shi, Ying
  • Jensen, Kirsten M. Ø.
  • Smedskjær, Morten Mattrup
  • Neuefeind, Jörg
  • Ge, Xuan
  • Juelsholt, Mikkel
  • Sørensen, Søren Strandskov
  • Jensen, Lars Rosgaard
  • Kirsten, M. Ø. Jensen
  • Yue, Yuanzheng
  • Jalaludeen, Mohamed Faizal Ussama
  • Sochacki, Tomasz
  • Zajac, Magdalena A.
  • Weyher, Jan L.
  • Grabianska, Karolina
  • Kirste, Lutz
  • Iwinska, Malgorzata
  • Kucharski, Robert
  • Rzoska, Sylwester
  • Starzonek, Szymon
  • Szpakiewicz-Szatan, Aleksander
  • Pietrzak, Tomasz K.
  • Garbarczyk, Jerzy
  • Cielecki, Pawel Piotr
  • Skovsen, Esben
  • Johra, Hicham
  • Calahoo, Courtney
  • Schirmacher, Walter
  • Pan, Zhiwen
  • Wondraczek, Lothar
  • Benzine, Omar
  • Bødker, Mikkel Sandfeld
  • Mauro, John C.
  • Logunov, Stephan L.
  • Youngman, Randall E.
  • Rzoska, Sylwester J.
  • Ren, Xiangting
  • Liu, Pengfei
  • Lucznik, Boleslaw
  • Wang, Qingwei
  • Ziebarth, Benedikt
  • Ding, Linfeng
  • Doss, Karan
  • Lee, Kuo-Hao
  • Thieme, Manuel
  • Yang, Yongjian
  • Demouchy, Sylvie
  • Gross, Timothy M.
  • Jaccani, Siva Priya
  • Huang, Liping
  • Wu, Jingshi
  • Stebbins, Jonathan F.
  • Bista, Saurav
  • Smedskjaer, Morten, M.
  • Mauro, John, C.
  • Kapoor, Saurabh
  • Cherbib, Mohamed Atef
  • Hansen, Søren Ravn
  • Østergaard, Martin Bonderup
  • Januchta, Kacper
  • To, Theany
  • Bauchy, Mathieu
  • Kirste, Ronny
  • Guo, Qiang
  • Breckenridge, M. Hayden
  • Klump, Andrew
  • Washiyama, Shun
  • Mecouch, Will
  • Sitar, Zlatko
  • Kim, Ji
  • Tweedie, James
  • Reddy, Pramod
  • Collazo, Ramon
  • Guan, Yan
  • Mita, Seiji
  • Sun, Ruofu
  • König, Jakob
  • Petersen, Rasmus Rosenlund
  • Bechgaard, Tobias Kjær
  • Goel, Ashutosh
  • Svenson, Mouritz Nolsøe
  • Thirion, Lynn M.
OrganizationsLocationPeople

article

(Invited) Advances in Ion Implantation of GaN and AlN

  • Kirste, Ronny
  • Guo, Qiang
  • Breckenridge, M. Hayden
  • Klump, Andrew
  • Washiyama, Shun
  • Mecouch, Will
  • Sitar, Zlatko
  • Kim, Ji
  • Tweedie, James
  • Reddy, Pramod
  • Collazo, Ramon
  • Guan, Yan
  • Bockowski, Michal
  • Mita, Seiji
Abstract

<jats:p>Ion implantation is one of the basic tools for semiconductor device fabrication and as such any maturing semiconductor system should be capable of being processed in this form. Currently, III-nitrides dot not possess a robust ion implantation toolbox that allows for reliable implantation control and activation, thus precluding the possibility of pursuing advanced device architectures comparable to those in SiC. This is obvious when trying to advance the capabilities of the III-nitrides for power applications, where the need for proper field managing schemes require spatially distributed doping distributions that can be achieved by ion implantation. Recent advances in ion implantation for the realization n-type AlN and p-type GaN will be discussed. </jats:p><jats:p>AlN is considered for deep-UV optoelectronics and next generation high power devices due to its ultra wide bandgap. So far, n-type AlN has been achieved by doping with silicon during epitaxial growth. However, achieving high conductivity in <jats:italic>n</jats:italic>-type AlN is still a major challenge due to self-compensation via DX and vacancy complex formation at equilibrium. This has made it necessary to consider other non-equilibrium based doping methods, such as ion implantation. In this work, doping AlN by Si implantation is considered. Si implantation was realized into AlN homoepitaxial films grown on bulk AlN substrates via metal organic chemical vapor deposition (MOCVD). Samples were implanted with doses ranging between 5x10<jats:sup>13</jats:sup>and 1x10<jats:sup>15</jats:sup>cm<jats:sup>-2</jats:sup>at 100 keV at RT. Although high-temperature annealing is necessary for damage removal, it enables compensating defect formation by vacancy-silicon complex formation favorable at equilibrium as observed in MOCVD grown AlN. Hence point defect control is necessary during annealing. We further demonstrate defect quasi Fermi level (dQFL) control based compensating point defect reduction in Si implanted AlN during damage recovery. Thus, the highest reported <jats:italic>n</jats:italic>-type conductivity in AlN was achieved. These results show a possible pathway for the realization of <jats:italic>n</jats:italic>-type AlN for future optoelectronic and power electronic devices. </jats:p><jats:p>GaN-based high power switches are a promising avenue towards realizing advances in power management. Controlling the selective area doping of both <jats:italic>n</jats:italic>- and <jats:italic>p</jats:italic>-type regions is necessary to realize these device structures. Although high <jats:italic>n</jats:italic>-type carrier concentrations and conductivities in GaN have been reproducibly demonstrated, achieving high <jats:italic>p</jats:italic>-type conductivity after ion implantation remains a challenge. To prevent the surface decomposition during annealing at these elevated temperatures required for post-implantation anneals, previous efforts have focused on the use of capping layers (e.g. AlN) and/or complicated annealing procedures. In this work we demonstrate the ability to successfully achieve <jats:italic>p</jats:italic>-type conductivity in GaN films via room temperature Mg implantation and a post-implantation annealing procedure at high pressure (1 GPa). The highest recorded p-type conductivity (~0.1 Ω<jats:sup>-1</jats:sup>·cm<jats:sup>-1</jats:sup>) was measured on the Mg implanted GaN film grown on a sapphire substrate and annealed at 1300 °C and 1 GPa. The implantation and annealing conditions that resulted in the highest <jats:italic>p</jats:italic>-type conductivity were selected to fabricate <jats:italic>p-i-n</jats:italic>junction diodes by Mg implantation in <jats:italic>n</jats:italic>-type GaN grown homoepitaxially on Ammono wafers. </jats:p><jats:p>All these results support the possibility of realizing successful ion implantation in III-nitrides adding to the growing toolbox of capabilities for this technology.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • semiconductor
  • nitride
  • Silicon
  • annealing
  • activation
  • chemical vapor deposition
  • decomposition
  • vacancy
  • point defect