Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rolison, Debra

  • Google
  • 14
  • 45
  • 331

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2021Designing Oxide Aerogels with Enhanced Sorptive and Degradative Activity for Acute Chemical Threats12citations
  • 2020Mesoporous Copper Nanoparticle/TiO2 Aerogels for Room-Temperature Hydrolytic Decomposition of the Chemical Warfare Simulant Dimethyl Methylphosphonate28citations
  • 2020Electronic Metal–Support Interactions in the Activation of CO Oxidation over a Cu/TiO2 Aerogel Catalyst26citations
  • 2020Stabilization of reduced copper on ceria aerogels for CO oxidation17citations
  • 2020Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.14citations
  • 2019(Keynote) Effect of Architecturally Expressed Electrodes and Catalysts on Energy Storage/Conversion in Aqueous Electrolytescitations
  • 2018Trapping a Ru2O3 Corundum-like Structure at Ultrathin, Disordered RuO2 Nanoskins Expressed in 3D8citations
  • 2017Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures90citations
  • 2017Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis37citations
  • 2017Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO253citations
  • 2017Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materialscitations
  • 2016Aerogel Architectures Boost Oxygen‐Evolution Performance of NiFe2Ox Spinels to Activity Levels Commensurate with Nickel‐Rich Oxides21citations
  • 2015Routes to 3D conformal solid-state dielectric polymers: electrodeposition versus initiated chemical vapor deposition20citations
  • 2008Self-Limiting Electropolymerization of o-Aminophenol on Ultraporous Carbon Nanoarchitectures for Electrochemical Capacitor Applications5citations

Places of action

Chart of shared publication
Novak, Travis G.
1 / 3 shared
Long, Jeffrey W.
3 / 4 shared
Desario, Paul
12 / 25 shared
Pennington, Ashley M.
2 / 2 shared
Balboa, Alex
1 / 2 shared
Delia, Daniel
1 / 1 shared
Pietron, Jeremy
6 / 11 shared
Pitman, Catherine
2 / 2 shared
Maynes, Andrew
1 / 1 shared
Morris, John
1 / 1 shared
Barlow, Daniel
1 / 1 shared
Esparraguera, Liam F.
1 / 1 shared
Pennington, Ashley
1 / 2 shared
Brintlinger, Todd
4 / 10 shared
Owrutsky, Jeff
2 / 2 shared
Yesinowski, James P.
1 / 1 shared
Glaser, Evan R.
1 / 1 shared
Pitman, Catherine L.
1 / 3 shared
Dunkelberger, Adam D.
2 / 2 shared
Melinger, Joseph S.
2 / 2 shared
Johannes, Michelle
1 / 1 shared
Miller, Joel
1 / 1 shared
Long, Jeffrey
3 / 4 shared
Sassin, Megan B.
3 / 4 shared
Parker, Joseph F.
3 / 4 shared
Ko, Jesse
1 / 1 shared
Chervin, Christopher N.
5 / 7 shared
Hopkins, Brandon J.
1 / 1 shared
Mansour, Azzam N.
1 / 2 shared
Donakowski, Martin D.
2 / 3 shared
Pala, Irina R.
2 / 3 shared
Mcentee, Monica
1 / 1 shared
Baturina, Olga A.
2 / 2 shared
Stroud, Rhonda M.
1 / 3 shared
Nelson, Eric S.
2 / 3 shared
Osofsky, Michael S.
1 / 1 shared
Owrutsky, Jeffrey C.
1 / 2 shared
Krowne, Clifford M.
1 / 1 shared
Bussmann, Konrad M.
1 / 1 shared
Charipar, Kristin M.
1 / 1 shared
Miller, Bryan W.
1 / 1 shared
Wallace, Jean Marie
1 / 1 shared
Fischer, Anne E.
1 / 1 shared
Saunders, Matthew P.
1 / 1 shared
Lytle, Justin C.
1 / 1 shared
Chart of publication period
2021
2020
2019
2018
2017
2016
2015
2008

Co-Authors (by relevance)

  • Novak, Travis G.
  • Long, Jeffrey W.
  • Desario, Paul
  • Pennington, Ashley M.
  • Balboa, Alex
  • Delia, Daniel
  • Pietron, Jeremy
  • Pitman, Catherine
  • Maynes, Andrew
  • Morris, John
  • Barlow, Daniel
  • Esparraguera, Liam F.
  • Pennington, Ashley
  • Brintlinger, Todd
  • Owrutsky, Jeff
  • Yesinowski, James P.
  • Glaser, Evan R.
  • Pitman, Catherine L.
  • Dunkelberger, Adam D.
  • Melinger, Joseph S.
  • Johannes, Michelle
  • Miller, Joel
  • Long, Jeffrey
  • Sassin, Megan B.
  • Parker, Joseph F.
  • Ko, Jesse
  • Chervin, Christopher N.
  • Hopkins, Brandon J.
  • Mansour, Azzam N.
  • Donakowski, Martin D.
  • Pala, Irina R.
  • Mcentee, Monica
  • Baturina, Olga A.
  • Stroud, Rhonda M.
  • Nelson, Eric S.
  • Osofsky, Michael S.
  • Owrutsky, Jeffrey C.
  • Krowne, Clifford M.
  • Bussmann, Konrad M.
  • Charipar, Kristin M.
  • Miller, Bryan W.
  • Wallace, Jean Marie
  • Fischer, Anne E.
  • Saunders, Matthew P.
  • Lytle, Justin C.
OrganizationsLocationPeople

article

(Keynote) Effect of Architecturally Expressed Electrodes and Catalysts on Energy Storage/Conversion in Aqueous Electrolytes

  • Long, Jeffrey
  • Sassin, Megan B.
  • Parker, Joseph F.
  • Ko, Jesse
  • Chervin, Christopher N.
  • Hopkins, Brandon J.
  • Desario, Paul
  • Rolison, Debra
Abstract

<jats:p>The design platform around which our team creates high-performance electrodes for electrochemical energy devices that use aqueous electrolytes entails the use of porous, aperiodic architectures. The electrode structures, which are based on such form factors as papers and foams, are mostly nothing. Fabrication is based on bench top and scalable protocols with the final 3D form comprising a solid, bonded network co-continuous in three dimensions (3D) with micro- and nanoscale void. Three recent examples include: </jats:p><jats:p>(1) Demonstrating the activity and stability of conformal RuO<jats:sub>2</jats:sub> “nanoskins” on technologically relevant, silica fiber paper for water oxidation in acid electrolyte. By wrapping the fibers with &lt;100 nm–thick shells of conductive pyrolytic carbon before nanoskin deposition, the RuO<jats:sub>2</jats:sub>@C@SiO<jats:sub>2</jats:sub> electrode evolves O<jats:sub>2</jats:sub> with an overpotential of 330 mV at 40–60 mA mg<jats:sub>RuO₂</jats:sub><jats:sup>–1</jats:sup> and retains the high specific activity of RuO<jats:sub>2</jats:sub> nanoskins while using a catalyst density 300−580× less than that of bulk RuO<jats:sub>2</jats:sub> [1]. </jats:p><jats:p>(2) Fabricating dendrite-prone zinc into monolithic anodes with porous, aperiodic architectured form-factors (“sponges”) that innately suppress zinc migration and dendrite development in alkaline electrolyte. With unprecedented cyclability at high depths-of-discharge (theoretical DOD<jats:sub>Zn</jats:sub>), increased specific capacity relative to conventional powder-bed Zn electrodes, and tens of thousands of cycles at low-DOD<jats:sub>Zn</jats:sub> pulse-power profiles in prototype Ni–Zn cells [2], this breakthrough enables the entire family of alkaline Zn batteries (Ni–Zn, Ag–Zn, MnO<jats:sub>2</jats:sub>–Zn, and Zn–air) to be reconfigured in extensively rechargeable forms, with energy and power characteristics that are competitive with Li-ion batteries. Our second-generation emulsion protocol improves the volumetric density of the sponge thereby concomitantly improving the energy density and power density of the cell while adding mechanical ruggedness to the anode [3]. </jats:p><jats:p>(3) Evaluating oxygen-evolution and -reduction electrocatalysts as a function of their pore–solid architecture in which the free volume can be adjusted from &gt;85% (aerogel) to 40–70% (ambigel) to ~30% (xerogel). Cryptomelane MnO<jats:sub>2</jats:sub> aerogel and xerogel yield identical electrocatalytic activity when cast as thin films onto rotating-disk electrodes, yet when formulated with conductive carbon and polymer binder into a microheterogeneous air cathode that balances the zinc sponge in a zinc–air button cell, the aerogel-catalyzed cell exhibits an overpotential for oxygen reduction lowered by ∼50 mV compared to the xerogel-based analog and improves discharge voltage by 100 mV at moderate-to-challenging current densities (5–125 mA cm<jats:sup>–2</jats:sup>) [4]. </jats:p><jats:p>[1] P.A. DeSario, C.N. Chervin, E.S. Nelson, M.B. Sassin, and D.R. Rolison, Competitive oxygen evolution in acid electrolyte catalyzed at technologically relevant electrodes painted with nanoscale RuO<jats:sub>2</jats:sub>. <jats:italic>ACS Appl. Mater. Interfaces</jats:italic>, <jats:bold>9</jats:bold>, 2387–2395 (2017). </jats:p><jats:p>[2] J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz, J.W. Long, and D.R. Rolison, Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. <jats:italic>Science</jats:italic>, <jats:bold>356</jats:bold>, 415–418 (2017). </jats:p><jats:p>[3] J.S. Ko, A.B. Geltmacher, B.J. Hopkins, D.R. Rolison, J.W. Long, and J.F. Parker, <jats:italic>ACS Appl. Energy Mater.</jats:italic> (doi: 10.1021/acsaem.8b01946). </jats:p><jats:p>[4] J.S. Ko, J.F. Parker, M.N. Vila, M.A. Wolak, M.B. Sassin, D.R. Rolison, and J.W. Long, Electrocatalyzed oxygen reduction at manganese oxide nanoarchitectures: From electroanalytical characterization to device-relevant performance in composite electrodes. <jats:italic>J. Electrochem. Soc</jats:italic>., <jats:bold>165</jats:bold>, H777–H783 (2018).</jats:p>

Topics
  • Deposition
  • porous
  • density
  • impedance spectroscopy
  • pore
  • polymer
  • Carbon
  • energy density
  • nickel
  • thin film
  • Oxygen
  • zinc
  • laser emission spectroscopy
  • composite
  • Lithium
  • void
  • Manganese